Advertisement

Electronic and optical properties of β′-Tb2(MoO4)3: DFT+U approach

  • A. H. ReshakEmail author
Regular Article

Abstract

The ground state properties of β′-Tb2(MoO4)3 are investigated using the density functional theory plus U-Hubbard Hamiltonian. To ascertain the influence of the spin-polarization on the ground state properties of orthorhombic β′-Tb2(MoO4)3, we have performed spin-polarization calculations and the spin-polarized electronic band structure for spin-up (↑) and spin-down (↓) are calculated. It has been found that for spin-up (↑) and spin-down (↓) the β′-Tb2(MoO4)3 compound possesses indirect energy band gap, as the valence band maximum (VBM) is located at Y point of the Brillouin zone (BZ) and the conduction band minimum (CBM) at the center of the BZ. The calculated value of the band gap is 3.61 eV for spin-up (↑) and spin-down (↓), and it is in close agreement with the measured one (3.76 eV). It is clear that the electronic band structure for spin-up (↑) and spin-down (↓) cases presents identical configuration. Therefore, we can conclude that the spin-polarization has identical influence on the ground state properties of β′-Tb2(MoO4)3. To ascertain this observation, we have presented and explained the necessary ingredients of the calculated total and atom-resolved density of states. It has been noticed that the calculated total density of states (TDOS) for spin-up (↑) and spin-down (↓) cases are identical confirming that the spin-polarization has identical influence on the ground state properties of β′-Tb2(MoO4)3. For more details, in order to have deep insight into the electronic structure, we have presented the atom-resolved density of states which show identical features for spin-up (↑) and spin-down (↓). The angular momentum projected density of states (PDOS) helps to identify the angular momentum character of the various structures. To obtain more details about the electronic structure and, hence, the ground state properties, the complex first-order linear optical dispersion is calculated for spin-up (↑) and spin-down (↓) cases to ascertain the influence of the spin-polarization on the ground state properties.

Keywords

Solid State and Materials 

References

  1. 1.
    H.J. Borchardt, P.E.J. Bierstedt, Appl. Phys. 38, 2057 (1967)CrossRefGoogle Scholar
  2. 2.
    A.K. Tripathi, H.B.J. Lal, Phys. Soc. Jpn 49, 1896 (1980)ADSCrossRefGoogle Scholar
  3. 3.
    V.A. Efremov, Russ. Chem. Rev. 59, 627 (1990)ADSCrossRefGoogle Scholar
  4. 4.
    V. Dmitriev, V. Sinitsyn, R. Dilanian, D. Machon, A. Kuznetsov, E. Ponyatovsky, G. Lucazeau, H.P.J. Weber, Phys. Chem. Solids 64, 307 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    B.G. Bazarov, R.F. Klevtsova, O.D. Chimitova, I.A. Glinskaya, K.N. Fedorov, Y.L. Tushinova, Z.G. Bazarova, Russ. J. Inorg. Chem. 51, 800 (2006)CrossRefGoogle Scholar
  6. 6.
    Z.G. Xia, D.M.J. Chen, Am. Ceram. Soc. 93, 1397 (2010)CrossRefGoogle Scholar
  7. 7.
    M. Mączka, A. Majchrowski, I.V. Kityk, Vib. Spectrosc. 64, 158 (2013)CrossRefGoogle Scholar
  8. 8.
    O.D. Chimitova, V.V. Atuchin, B.G. Bazarov, M.S. Molokeev, Z.G. Bazarova, Proc. SPIE 8771, 87711A (2013)ADSCrossRefGoogle Scholar
  9. 9.
    J. Hanuza, L. Macalik, K.J. Hermanowicz, Mol. Struct. 319, 17 (1994)ADSCrossRefGoogle Scholar
  10. 10.
    L.J. Macalik, Alloys Compd. 341, 226 (2002)CrossRefGoogle Scholar
  11. 11.
    A. Kato, S. Oishi, T. Shishido, M. Yamazaki, S.J. Iida, Phys. Chem. Solids 66, 2079 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    O.D. Chimitova, B.G. Bazarov, R.F. Klevtsova, A.G. Anshits, K.N. Fedorov, A.V. Dubentsov, T.A. Vereshchagina, Y.L. Tushinova, L.A. Glinskaya, Z.G. Bazarova, L.I. Gongorova, J. Struct. Chem. 51, 173 (2010)CrossRefGoogle Scholar
  13. 13.
    J.F. Tang, Y.J. Chen, Y.F. Lin, X.H. Gong, J.H. Huang, Z.D. Luo, Y.D.J. Huang, Opt. Soc. Am. B 27, 1769 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    V.V. Atuchin, V.G. Grossman, S.V. Adichtchev, N.V. Surovtsev, T.A. Gavrilova, B.G. Bazarov, Opt. Mater. 34, 812 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    C.S. Lim, Asian J. Chem. 24, 5662 (2012)Google Scholar
  16. 16.
    V.V. Atuchin, O.D. Chimitova, S.V. Adichtchev, B.G. Bazarov, T.A. Gavrilova, M.S. Molokeev, N.V. Surovtsev, Zh.G. Bazarova, Mater. Lett. 106, 26 (2013)CrossRefGoogle Scholar
  17. 17.
    S. Mielcarek, Z. Tylczyński, Z. Trybuła, S. Łoś, B. Mroz, Cryst. Res. Technol. 40, 1146 (2005)CrossRefGoogle Scholar
  18. 18.
    Guipeng Cai, Jiyang Wang, Huaijin Zhang, Cryst. Res. Technol. 44, 1001 (2009)CrossRefGoogle Scholar
  19. 19.
    K. Nassau, H.J. Levinstein, G.M. Loiacono, J. Phys. Chem. Solids 26, 1805 (1965)ADSCrossRefGoogle Scholar
  20. 20.
    Song Peng, Wei Cai, Xiaofei Wang, Yi Kan, Fengzhen Huang, Min Xu, Huaijin Zhang, Jiyang Wang, Xiaomei Lu, Jinsong Zhu, Ferroelectrics 410, 69 (2010)CrossRefGoogle Scholar
  21. 21.
    H.J. Borchardt, P.E. Bierstedt, J. Appl. Phys. 18, 2057 (1967)ADSCrossRefGoogle Scholar
  22. 22.
    E.T. Keve, S.C. Abrahams, K. Nassau, A.M. Glass, Solid State Commun. 8, 1517 (1970)ADSCrossRefGoogle Scholar
  23. 23.
    E.T. Keve, S.C. Abrahams, J.L. Berstein, J. Chem. Phys. 54, 3185 (1971)ADSCrossRefGoogle Scholar
  24. 24.
    S.C. Abrahams, C. Svensson, J.L. Bernstein, J. Chem. Phys. 72, 4278 (1980)ADSCrossRefGoogle Scholar
  25. 25.
    C. Svensson, S.C. Abrahams, J.L. Bernstein, J. Chem. Phys. 71, 5191 (1979)ADSCrossRefGoogle Scholar
  26. 26.
    V.V. Atuchin, A.S. Aleksandrovsky, O.D. Chimitova, A.S. Krylov, M.S. Molokeev, B.G. Bazarov, J.G. Bazarova, Zhiguo Xia, Opt. Mater. 36, 1631 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    E.T. Keve, S.C. Abrahams, J.L. Bernstein, J. Chem. Phys. 54, 3185 (1971)ADSCrossRefGoogle Scholar
  28. 28.
    F.G. Ulman, B.J. Holden, B.N. Gauguly, J.R. Hardy, Phys. Rev. B 8, 2991 (1973)ADSCrossRefGoogle Scholar
  29. 29.
    S.S. Saleem, G. Arulhas, H.D. Bist, J. Solid State Chem. 48, 77 (1983)ADSCrossRefGoogle Scholar
  30. 30.
    L. Guy, M. Denis, J. Raman Spectrosc. 37, 189 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    H. Ida, K. Shinozaki, T. Honma, K. Oh-ishi, T. Komatsu, J. Solid State Chem. 196, 384 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    M. Imaoka, J. Ceram. Soc. Jpn 69, 282 (1961)Google Scholar
  33. 33.
    P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, An augmented plane wave plus local orbitals program for calculating crystal properties (Vienna University of Technology, Austria, 2001)Google Scholar
  34. 34.
    J.P. Perdew, S. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  35. 35.
    V.I. Anisimov, I.V. Solvyev, M.A. Korotin, M.T. Czyzyk, C.A. Sawatzky, Phys. Rev. B 48, 16929 (1993)ADSCrossRefGoogle Scholar
  36. 36.
    A.I. Liechtenstein, V.I. Anisimov, J. Zaanen, Phys. Rev. B 52, R5467 (1995)ADSCrossRefGoogle Scholar
  37. 37.
    O.K. Andersen, Phys. Rev. B 12, 3060 (1975)ADSCrossRefGoogle Scholar
  38. 38.
    J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)ADSCrossRefGoogle Scholar
  39. 39.
    B.K. Ponomarev, B.S. Red’kin, A.G.M. Jansen, P. Wyder, H. Wiegelmann, E. Steep, Phys. Solid State 50, 1495 (2008)ADSCrossRefGoogle Scholar
  40. 40.
    M. Xu, Y.G. Yu, H.J. Zhang, J.Y. Wang, J. Rare Earths 27, 192 (2009)CrossRefGoogle Scholar
  41. 41.
    G.P. Cai, J.Y. Wang, H.J. Zhang, Cryst. Res. Technol. 44, 1001 (2009)CrossRefGoogle Scholar
  42. 42.
    Y. Saeed, S. Nazir, A. Shaukat, A.H. Reshak, J. Magn. Magn. Mater. 322, 3214 (2010)ADSCrossRefGoogle Scholar
  43. 43.
    M.B. Kanoun, A.H. Reshak, N.K.-Bouayed, S.G.-Said, J. Magn. Magn. Mater. 324, 1397 (2012)ADSCrossRefGoogle Scholar
  44. 44.
    H.S. Saini, M. Singh, A.H. Reshak, M.K. Kashyap, J. Magn. Magn. Mater. 331, 1 (2013)ADSCrossRefGoogle Scholar
  45. 45.
    A.H. Reshak, H. Kamarudin, Z.A. Alahmed, S. Auluck, J. Chyský, J. Magn. Magn. Mater. 361, 206 (2014)ADSCrossRefGoogle Scholar
  46. 46.
    A.H. Reshak, Z.A. Alahmed, J. Bila, V.V. Atuchin, B.G. Bazarov, O.D. Chimitova, M.S. Molokeev, I.P. Prosvirin, A.P. Yelisseyev, J. Phys. Chem. C 120, 10559 (2016)CrossRefGoogle Scholar
  47. 47.
    A.H. Reshak, RSC Advances 6, 54001 (2016)CrossRefGoogle Scholar
  48. 48.
    F. Wooten, Optical Properties of solids (Academic Press, New York, London, 1972)Google Scholar
  49. 49.
    D.R. Penn, Phys. Rev. B 128, 2093 (1962)ADSCrossRefGoogle Scholar
  50. 50.
    G.D. Boyd, H. Kasper, J.H. McFee, IEEE J. Quantum Electron. 7, 563 (1971)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.New Technologies – Research Centre, University of West BohemiaPilsenCzech Republic
  2. 2.School of Material Engineering, University Malaysia PerlisPerlisMalaysia

Personalised recommendations