Advertisement

Emergence of F(R) gravity-analogue due to defects in graphene

  • Alireza Sepehri
  • Richard PincakEmail author
  • Ahmed Farag Ali
Regular Article

Abstract

We show that the defects of graphene, which lead to the non-equality between positive curvature of fermions with anti-parallel spins and negative curvature of fermions with parallel spins, imply an emergence of F(R) gravity. By increasing the number of atoms at each defect, the order of scalar curvature increases and the shape of F(R) gravity changes. This gravity has a direct relation with energy-momentum tensor and leads to motion of electrons in a special path and hence producing superconductivity. Also, for some special angles, parallel spins become close to each other and repel to each other. In that condition, the shape of F(R) gravity changes and electrons can’t continue to move in an initial path and return. Consequently, superconductivity disappears and one new conductivity appears in opposite direction.

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    V. Haefner, J. Schindler, N. Weik, T. Mayer, S. Balakrishnan, R. Narayanan, S. Bera, F. Evers, Phys. Rev. Lett. 113, 186802 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    A. Dasgupta, S. Bera, F. Evers, M.J. van Setten, Phys. Rev. B 85, 125433 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    J. Gonzalez, J. Herrero, Nucl. Phys. B 2, 426 (2010)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    D.E. Fernandes, N. Engheta, M.G. Silveirinha, Phys. Rev. B 90, 041406 (R)Google Scholar
  5. 5.
    A. Sepehri, Phys. Lett. A 380, 1401 (2016)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    S.D. Odintsov, V.K. Oikonomou, Phys. Rev. D 90, 124083 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    S.D. Odintsov, V.K. Oikonomou, E.N. Saridakis, arXiv:1501.06591 [gr-qc] (2015)
  8. 8.
    S.D. Odintsov, V.K. Oikonomou, arXiv:1504.06866 [gr-qc] (2015)
  9. 9.
    S. Capozziello, V.F. Cardone, A. Troisi, Phys. Rev. D 71, 043503 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    S. Capozziello, V.F. Cardone, V. Salzano, Phys. Rev. D 78, 063504 (2008)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    G.J. Olmo, D. Rubiera-Garcia, Phys. Rev. D 84, 124059 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    C. Bambi, A. Cardenas-Avendano, G.J. Olmo, D. Rubiera-Garcia, Phys. Rev. D 93, 064016 (2016)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    F.S.N. Lobo, G.J. Olmo, D. Rubiera-Garcia, Phys. Rev. D 91, 124001 (2015)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    C. Bambi, M. Ghasemi-Nodehi, D. Rubiera-Garcia, Phys. Rev. D 92, 044016 (2015)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    A. Sepehri, Phys. Lett. B 748, 328335 (2015)CrossRefGoogle Scholar
  16. 16.
    A. Sepehri, F. Rahaman, S. Capozziello, A. Farag Ali, A. Pradhan, Eur. Phys. J. C 76, 231 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    A. Sepehri, Phys. Lett. A 380, 2247 (2016)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    A. Sepehri, M.R. Setare, S. Capozziello, arXiv:1512.04840 [hep-th] (2015)
  19. 19.
    J. Bagger, N. Lambert, Phys. Rev. D 77, 065008 (2008)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    A. Gustavsson, Nucl. Phys. B 811, 66 (2009)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Pei-Ming Ho, Yutaka Matsuo, JHEP 0806, 105 (2008)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Sunil Mukhi, Constantinos Papageorgakis, JHEP 0805, 085 (2008)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    J. Kluson, JHEP 0011, 016 (2000)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    R.C. Myers, JHEP 12, 022 (1999)ADSCrossRefGoogle Scholar
  25. 25.
    N.R. Constable, R.C. Myers, O. Tafjord, JHEP 0106, 023 (2001)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    A.A. Tseytlin, arXiv:hep-th/9908105 (1999)
  27. 27.
    Chong-Sun Chu, Douglas J. Smith, JHEP 0904, 097 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    B. Sathiapalan, N. Sircar, JHEP 0808, 019 (2008)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    N.R. Constable, R.C. Myers, O. Tafjord, Phys. Rev. D 61, 106009 (2000)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    C. de Rham, G. Gabadadze, A.J. Tolley, Phys. Rev. Lett. 106, 231101 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    C. de Rham, L. Heisenberg, Phys. Rev. D 84, 043503 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    A. Emir Gumrukcuoglu, Chunshan Lin, Shinji Mukohyama, JCAP 1111, 030 (2011)CrossRefGoogle Scholar
  33. 33.
    L. Heisenberg, R. Kimura, K. Yamamoto, Phys. Rev. D 89, 103008 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    M. Cruz, E. Rojas, Class. Quantum Grav. 30, 115012 (2013)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    R. Pincak, J. Smotlacha, Eur. Phys. J. B 86, 480 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    G. Dmitrakakis, SPIE newsroom (2009)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Alireza Sepehri
    • 1
    • 2
  • Richard Pincak
    • 3
    • 4
    Email author
  • Ahmed Farag Ali
    • 5
    • 6
  1. 1.Faculty of Physics, Shahid Bahonar UniversityKermanIran
  2. 2.Research Institute for Astronomy and Astrophysics of Maragha (RIAAM)MaraghaIran
  3. 3.Institute of Experimental Physics, Slovak Academy of SciencesKosiceSlovak Republic
  4. 4.Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear ResearchMoscow regionRussia
  5. 5.Netherlands Institute for Advanced StudyAmsterdamthe Netherlands
  6. 6.Department of PhysicsFaculty of Science, Benha UniversityBenhaEgypt

Personalised recommendations