Advertisement

Power-law regularities in human language

  • Ali Mehri
  • Sahar Mohammadpour Lashkari
Regular Article

Abstract

Complex structure of human language enables us to exchange very complicated information. This communication system obeys some common nonlinear statistical regularities. We investigate four important long-range features of human language. We perform our calculations for adopted works of seven famous litterateurs. Zipf’s law and Heaps’ law, which imply well-known power-law behaviors, are established in human language, showing a qualitative inverse relation with each other. Furthermore, the informational content associated with the words ordering, is measured by using an entropic metric. We also calculate fractal dimension of words in the text by using box counting method. The fractal dimension of each word, that is a positive value less than or equal to one, exhibits its spatial distribution in the text. Generally, we can claim that the Human language follows the mentioned power-law regularities. Power-law relations imply the existence of long-range correlations between the word types, to convey an especial idea.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    J.M. Smith, E. Szäthmáry, The Major Transitions in Evolution (Oxford University Press, Oxford, 1997)Google Scholar
  2. 2.
    M.A. Montemurro, D.H. Zanette, arXiv:1503.01129v1 (2015)
  3. 3.
    L. Lü, Z.K. Zhang, T. Zhou, Sci. Rep. 3, 1082 (2013)Google Scholar
  4. 4.
    G. Zipf, Human Behavior and the Principle of Least Effort: An introduction to Human Ecology (Addison-Wesley Press, Cambridge, 1949)Google Scholar
  5. 5.
    H.S. Heaps, Information Retrieval: Computational and Theoretical Aspects (Academic Press, New York, 1978)Google Scholar
  6. 6.
    T. Cover, J. Thomas, Elements of Information Theory (John Wiley & Sons, New York, 1991)Google Scholar
  7. 7.
    J. Sienkiewicz, M. Skowron, G. Paltoglou, J.A. Holyst, Advs. Complex Syst. 16, 1350026 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    M.F. Barnsley, Fractals Everywhere, 2nd edn. (Morgan Kaufmann, San Francisco, 1993)Google Scholar
  9. 9.
    E. Najafi, A.H. Darooneh, PLoS One 10, e0130617 (2015)CrossRefGoogle Scholar
  10. 10.
    E.G. Altmann, M. Gerlach, arXiv:1502.03296v1 (2015)
  11. 11.
    S.T. Piantadosi, Psychon. Bull. Rev. 21, 1112 (2014)CrossRefGoogle Scholar
  12. 12.
    D.H. Zanette, arXiv:1412.3336v1 (2014)
  13. 13.
    I. Moreno-Sánchez, F. Font-Clos, A. Corral, PLoS One 11, e0147073 (2016)CrossRefGoogle Scholar
  14. 14.
    J. Baixeries, B. Elvevåg, R. Ferrer-i-Cancho, PLoS One 8(3), e53227 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    X. Yan, P. Minnhagen, Physica A 444, 828 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    F. Font-Clos, A. Corral, Phys. Rev. Lett. 114, 238701 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    J.R. Williams, P.R. Lessard, S. Desu, E.M. Clark, J.P. Bagrow, C.M. Danforth, P.S. Dodds, Sci. Rep. 5, 12209 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    À. Corral, G. Boleda, R. Ferrer-i-Cancho, PLoS One 10, e0129031 (2015)CrossRefGoogle Scholar
  19. 19.
    A. Gelbukh, G. Sidorov, Lect. Notes Comput. Sci. 2004, 332 (2001)CrossRefGoogle Scholar
  20. 20.
    W. Deng, A.E. Allahverdyan, B. Li, Q.A. Wang, Eur. Phys. J. B 87, 47 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    A.M. Petersen, J.N. Tenenbaum, S. Havlin, H.E. Stanley, M. Perc, Sci. Rep. 2, 943 (2012)ADSGoogle Scholar
  22. 22.
    R. Ferrer i Cancho, R.V. Solé, J. Quant. Linguist. 8, 165 (2001)CrossRefGoogle Scholar
  23. 23.
    J.R. Williams, J.P. Bagrow, C.M. Danforth, P.S. Dodds, Phys. Rev. E 91, 052811 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    S. Bernhardsson, L.E. Correa da Rocha, P. Minnhagen, New J. Phys. 11, 123015 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    Z.K. Zhang, L. Lü, J.G. Liu, T. Zhou, Eur. Phys. J. B 66, 557 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    V.V. Bochkarev, E.Y. Lerner, A.V. Shevlyakova, J. Phys.: Conf. Ser. 490, 012009 (2014)ADSGoogle Scholar
  27. 27.
    M. Gerlach, E.G. Altmann, Phys. Rev. X 3, 021006 (2013)Google Scholar
  28. 28.
    L. Lü, Z.K. Zhang, T. Zhou, PLoS One 5, e14139 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    M.A. Montemurro, D.H. Zanette, Adv. Complex Syst. 13, 135 (2010)CrossRefGoogle Scholar
  30. 30.
    A. Mehri, A.H. Darooneh, Physica A 390, 3157 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    A. Mehri, A.H. Darooneh, Phys. Rev. E 83, 056106 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    A. Mehri, M. Jamaati, H. Mehri, Phys. Lett. A 379, 1627 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    K. Falconer, Fractal Geometry, 2nd edn. (John Wiley & Sons, Chichester, 2003)Google Scholar
  34. 34.
    M. Ausloos, Phys. Rev. E 86, 031108 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    S. Drożdż et al., Information Sci. 331, 32 (2016)CrossRefGoogle Scholar
  36. 36.
    A.E. Allahverdyan, W. Deng, Q.A. Wang, Phys. Rev. E 88, 062804 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    A. Clauset, C.R. Shalizi, M.E.J. Newman, SIAM Rev. 51, 661 (2009)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of PhysicsFaculty of Science, Noshirvani University of TechnologyBabolIran

Personalised recommendations