Advertisement

Nonequilibrium dynamics of the three-dimensional Edwards-Anderson spin-glass model with Gaussian couplings: strong heterogeneities and the backbone picture

  • Federico RomáEmail author
  • Sebastian Bustingorry
  • Pablo M. Gleiser
Regular Article

Abstract

We numerically study the three-dimensional Edwards-Anderson model with Gaussian couplings, focusing on the heterogeneities arising in its nonequilibrium dynamics. Results are analyzed in terms of the backbone picture, which links strong dynamical heterogeneities to spatial heterogeneities emerging from the correlation of local rigidity of the bond network. Different two-times quantities as the flipping time distribution and the correlation and response functions, are evaluated over the full system and over high- and low-rigidity regions. We find that the nonequilibrium dynamics of the model is highly correlated to spatial heterogeneities. Also, we observe a similar physical behavior to that previously found in the Edwards-Anderson model with a bimodal (discrete) bond distribution. Namely, the backbone behaves as the main structure that supports the spin-glass phase, within which a sort of domain-growth process develops, while the complement remains in a paramagnetic phase, even below the critical temperature.

Keywords

Solid State and Materials 

References

  1. 1.
    K. Binder, A.P. Young, Rev. Mod. Phys. 58, 801 (1986)ADSCrossRefGoogle Scholar
  2. 2.
    J.A. Mydosh, Spin Glasses: An Experimental Introduction (Taylor & Francis, London, 1993)Google Scholar
  3. 3.
    J.L. Tholence, R. Tournier, J. Phys. 35, C4 (1974)Google Scholar
  4. 4.
    E.P. Wohlfarth, Physica B 86–88, 852 (1977)CrossRefGoogle Scholar
  5. 5.
    A.F.J. Morgownik, J.A. Mydosh, Phys. Rev. B 24, 5277 (1981).ADSCrossRefGoogle Scholar
  6. 6.
    B.H. Verbeek, G.J. Nieuwenhuys, J.A. Mydosh, C. van Dijk, B.D. Rainford, Phys. Rev. B 22, 5426 (1980)ADSCrossRefGoogle Scholar
  7. 7.
    M.A. Ruderman, C. Kittel, Phys. Rev. B 96, 99 (1954)ADSCrossRefGoogle Scholar
  8. 8.
    T. Kasuya, Prog. Theor. Phys. 16, 45 (1956)ADSCrossRefGoogle Scholar
  9. 9.
    K. Yosida, Phys. Rev. 106, 893 (1957)ADSCrossRefGoogle Scholar
  10. 10.
    G. Parisi, Phys. Rev. Lett. 43, 1754 (1979)ADSCrossRefGoogle Scholar
  11. 11.
    G. Parisi, Phys. Rev. Lett. 50, 1946 (1983)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    D.S. Fisher, D.A. Huse, Phys. Rev. Lett. 56, 1601 (1986)ADSCrossRefGoogle Scholar
  13. 13.
    S.F. Edwards, P.W. Anderson, J. Phys. F 5, 965 (1975)ADSCrossRefGoogle Scholar
  14. 14.
    G. Toulouse, Commun. Phys. 2, 115 (1977)Google Scholar
  15. 15.
    F. Barahona, R. Maynard, R. Rammal, J.P. Uhry, J. Phys. A 15, 673 (1982)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    T. Klotz, S. Kobe, J. Phys. A 27, L95 (1994)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    J.F. Valdés, J. Cartes, E.E. Vogel, S. Kobe, T. Klotz, Physica A 257, 557 (1998)ADSCrossRefGoogle Scholar
  18. 18.
    E.E. Vogel, S. Contreras, M.A. Osorio, A.J. Ramirez-Pastor, F. Nieto, Physica A 266, 425 (1999)ADSCrossRefGoogle Scholar
  19. 19.
    A.J. Ramirez-Pastor, F. Nieto, S. Contreras, E.E. Vogel, Physica A 283, 94 (2000)ADSCrossRefGoogle Scholar
  20. 20.
    F. Romá, S. Bustingorry, P.M. Gleiser, Phys. Rev. Lett. 96, 167205 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    F. Romá, S. Risau-Gusman, A.J. Ramirez-Pastor, F. Nieto, E.E. Vogel, Phys. Rev. B 75, 020402(R) (2007)ADSCrossRefGoogle Scholar
  22. 22.
    F. Romá, S. Bustingorry, P.M. Gleiser, D. Domínguez, Phys. Rev. Lett. 98, 097203 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    F. Romá, S. Bustingorry, P.M. Gleiser, Phys. Rev. B 81, 104412 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    F. Romá, S. Risau-Gusman, A.J. Ramirez-Pastor, F. Nieto, E.E. Vogel, Phys. Rev. B 82, 214401 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    M.L. Rubio Puzzo, F. Romá, S. Bustingorry, P.M. Gleiser, Europhys. Lett. 91, 37008 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    M.L. Rubio Puzzo, F. Romá, S. Bustingorry, P.M. Gleiser, J. Stat. Mech. 2010, P09017 (2010)CrossRefGoogle Scholar
  27. 27.
    F. Romá, S. Risau-Gusman, Phys. Rev. E 88, 042105 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    H.G. Katzgraber, M. Körner, A.P. Young, Phys. Rev. B 73, 224432 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    F. Romá, Phys. Rev. B 82, 212402 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    D. Stauffer, Introduction to Percolation Theory (Taylor & Francis, London, 1985)Google Scholar
  31. 31.
    F. Ricci-Tersenghi, R. Zecchina, Phys. Rev. E 62, R7567 (2000)ADSCrossRefGoogle Scholar
  32. 32.
    A. Barrat, Phys. Rev. E 57, 3629 (1998)ADSCrossRefGoogle Scholar
  33. 33.
    F. Ricci-Tersenghi, Phys. Rev. E 68, 065104(R) (2003)ADSCrossRefGoogle Scholar
  34. 34.
    L.F. Cugliandolo, in Slow Relaxations and Nonequilibrium Dynamics in Condensed Matter, edited by J.-L. Barrat et al. (Springer, Berlin, 2002)Google Scholar
  35. 35.
    A. Crisanti, F. Ritort, J. Phys. A 36, R181 (2003)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    E.E. Ferrero, F. Romá, S. Bustingorry, P.M. Gleiser, Phys. Rev. E 86, 031121 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    A. Montanari, F. Ricci-Tersenghi, Phys. Rev. B 68, 224429 (2003)ADSCrossRefGoogle Scholar
  38. 38.
    D.J. Perez-Morelo, A.J. Ramirez-Pastor, F. Romá, Physica A 391, 937 (2012)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    A.J. Ramirez-Pastor, F. Romá, F. Nieto, E.E. Vogel, Physica A 336, 454 (2004)ADSCrossRefGoogle Scholar
  40. 40.
    C. Geyer, in Computing Science and Statistics: Proceedings of the 23rd Symposium on the Interface (American Statistical Association, New York, 1991), p. 156Google Scholar
  41. 41.
    K. Hukushima, K. Nemoto, Phys. Soc. Jpn 65, 1604 (1996)ADSCrossRefGoogle Scholar
  42. 42.
    J.L. Moreno, H.G. Katzgraber, A.K. Hartmann, Int. J. Mod. Phys. C 14, 285 (2003)ADSCrossRefGoogle Scholar
  43. 43.
    F. Romá, S. Risau-Gusman, A.J. Ramirez-Pastor, F. Nieto, E.E. Vogel, Physica A 388, 2821 (2009)ADSCrossRefGoogle Scholar
  44. 44.
    C. Chatelain, J. Phys. A 36, 10739 (2003)ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    R.J. Glauber, J. Math. Phys. 4, 294 (1963)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    L.F. Cugliandolo, J. Kurchan, L. Peliti, Phys. Rev. E 55, 3898 (1997)ADSCrossRefGoogle Scholar
  47. 47.
    N. Metropolis, A.W. Rosenbluth, N.M. Rosenbluth, A.H. Teller, E. Teller, J. Chem. Phys. 21, 1087 (1953)ADSCrossRefGoogle Scholar
  48. 48.
    P.C. Hohenberg, B. Halperin, Rev. Mod. Phys. 49, 435 (1977)ADSCrossRefGoogle Scholar
  49. 49.
    M. Baity-Jesi et al., J. Stat. Mech. 2014, P05014 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Departamento de Física, Universidad Nacional de San LuisBWS San LuisArgentina
  2. 2.CONICET, Centro Atómico Bariloche, R8402AGP San Carlos de BarilocheRío NegroArgentina

Personalised recommendations