Amplification phenomena of Casimir force fluctuations on close scatterers coupled via a coherent fermionic fluid

  • Francesco RomeoEmail author
Regular Article


We study the mechanical actions affecting close scatterers immersed in a coherent fermionic fluid. Using a scattering field theory, we theoretically analyse the single-scatterer and the two-scatterer case. Concerning the single-scatterer case, we find that a net force affects the scatterer dynamics only in non-equilibrium condition, i.e. imposing the presence of a non-vanishing particle current flowing through the system. The force fluctuation (variance) is instead not negligible both in equilibrium and in non-equilibrium conditions. Concerning the two-scatterer case, an attractive fluid-mediated Casimir force is experienced by the scatterers at small spatial separation, while a decaying attractive/repulsive behavior as a function of the scatterer separation is found. Furthermore, the Casimir force fluctuations acting on a given scatterer in close vicinity of the other present an oscillating behavior reaching a long distance limit comparable to the noise level of the single-scatterer case. The relevance of these findings is discussed in connection with fluctuation phenomena in low-dimensional nanostructures and cold atoms systems.


Mesoscopic and Nanoscale Systems 


  1. 1.
    H.B.G. Casimir, Proc. K. Ned. Akad. Wet. 51, 793 (1948)Google Scholar
  2. 2.
    V. Mostepanenko, N. Trunov, The Casimir Effect and Its Applications (Clarendon, Oxford, 1997)Google Scholar
  3. 3.
    S.K. Lamoreaux, Phys. Rev. Lett. 78, 5 (1997)ADSCrossRefGoogle Scholar
  4. 4.
    S.K. Lamoreaux, Phys. Rev. Lett. 81, 5475 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    U. Mohideen, A. Roy, Phys. Rev. Lett. 81, 4549 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    G. Bressi, G. Carugno, R. Onofrio, G. Ruoso, Phys. Rev. Lett. 88, 041804 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    R.S. Decca, D. López, H.B. Chan, E. Fischbach, D.E. Krause, C.R. Jamell, Phys. Rev. Lett. 94, 240401 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    F. Intravaia, S. Koev, Il Woong Jung, A. Alec Talin, P.S. Davids, R.S. Decca, V.A. Aksyuk, D.A.R. Dalvit, D. López, Nat. Commun. 4, 2515 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    T.H. Boyer, Phys. Rev. 174, 1764 (1968)ADSCrossRefGoogle Scholar
  10. 10.
    T. Emig, A. Hanke, M. Kardar, Phys. Rev. Lett. 87, 260402 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    O. Schroeder, A. Scardicchio, R.L. Jaffe, Phys. Rev. A 72, 012105 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    T. Emig, A. Hanke, R. Golestanian, M. Kardar, Phys. Rev. Lett. 95, 250402 (2005)MathSciNetCrossRefGoogle Scholar
  13. 13.
    J.N. Munday, F. Capasso, V. Adrian Parsegian, Nature 457, 170 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    J.N. Fuchs, A. Recati, W. Zwerger, Phys. Rev. A 75, 043615 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    P. Wächter, V. Meden, K. Schönhammer, Phys. Rev. B 76, 045123 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    A. Recati, J.N. Fuchs, C.S. Peça, W. Zwerger, Phys. Rev. A 72, 023616 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    D. Zhabinskaya, J.M. Kinder, E.J. Mele, Phys. Rev. A 78, 060103(R) (2008)ADSCrossRefGoogle Scholar
  18. 18.
    A. Recati, P.O. Fedichev, W. Zwerger, J. von Delft, P. Zoller, Phys. Rev. Lett. 94, 040404 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    P. Utko, R. Ferone, I.V. Krive, R.I. Shekhter, M. Jonson, M. Monthioux, L. Noé, J. Nygård, Nat. Commun. 1, 37 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    B. Dzyubenko, H.-C. Lee, O.E. Vilches D.H. Cobden, Nat. Phys. 11, 398 (2015)CrossRefGoogle Scholar
  21. 21.
    F. Romeo, R. Citro, A. Di Bartolomeo, Phys. Rev. B 84, 153408 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    A.-F. Bitbol, P.G. Dommersnes, J.-B. Fournier, Phys. Rev. E 81, 050903(R) (2010)ADSCrossRefGoogle Scholar
  23. 23.
    B. Yurke, G.P. Kochanski, Phys. Rev. B 41, 8184 (1990)ADSCrossRefGoogle Scholar
  24. 24.
    C. Presilla, R. Onofrio, M.F. Bocko, Phys. Rev. B 45, 3735 (1992)ADSCrossRefGoogle Scholar
  25. 25.
    M. Büttiker, Phys. Rev. B 46, 12485 (1992)ADSCrossRefGoogle Scholar
  26. 26.
    C. Genet, A. Lambrecht, S. Reynaud, Phys. Rev. A 67, 043811 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    G.-L. Ingold, A. Lambrecht, Am. J. Phys. 83, 156 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    C. Barone, F. Romeo, A. Galdi, P. Orgiani, L. Maritato, A. Guarino, A. Nigro, S. Pagano, Phys. Rev. B 87, 245113 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    C. Barone, F. Romeo, S. Pagano, C. Attanasio, G. Carapella, C. Cirillo, A. Galdi, G. Grimaldi, A. Guarino, A. Leo, A. Nigro, P. Sabatino, Sci. Rep. 5, 10705 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    M. Pala, G. Iannaccone, Phys. Rev. B 69, 235304 (2004)ADSCrossRefGoogle Scholar
  31. 31.
    M.G. Pala, G. Iannaccone, Phys. Rev. Lett. 93, 256803 (2004)ADSCrossRefGoogle Scholar
  32. 32.
    H. Zheng, Z. Wang, Q. Shi, X. Wang, J. Chen, Phys. Rev. B 74, 155323 (2006)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Dipartimento di Fisica “E.R. Caianiello”, Università di SalernoFisciano (SA)Italy
  2. 2.CNR-SPIN SalernoFisciano (SA)Italy

Personalised recommendations