Advertisement

Time-dependent Mott transition in the periodic Anderson model with nonlocal hybridization

  • Felix Hofmann
  • Michael PotthoffEmail author
Regular Article

Abstract

The time-dependent Mott transition in a periodic Anderson model with off-site, nearest-neighbor hybridization is studied within the framework of nonequilibrium self-energy functional theory. Using the two-site dynamical-impurity approximation, we compute the real-time dynamics of the optimal variational parameter and of different observables initiated by sudden quenches of the Hubbard-U and identify the critical interaction. The time-dependent transition is orbital selective, i.e., in the final state, reached in the long-time limit after the quench to the critical interaction, the Mott gap opens in the spectral function of the localized orbitals only. We discuss the dependence of the critical interaction and of the final-state effective temperature on the hybridization strength and point out the various similarities between the nonequilibrium and the equilibrium Mott transition. It is shown that these can also be smoothly connected to each other by increasing the duration of a U-ramp from a sudden quench to a quasi-static process. The physics found for the model with off-site hybridization is compared with the dynamical Mott transition in the single-orbital Hubbard model and with the dynamical crossover found for the real-time dynamics of the conventional Anderson lattice with on-site hybridization.

Keywords

Solid State and Materials 

References

  1. 1.
    N.F. Mott, Proc. Phys. Soc. London A 62, 416 (1949)ADSCrossRefGoogle Scholar
  2. 2.
    N. Mott, Metal-Insulator Transitions, 2nd edn. (Taylor & Francis, London, 1990)Google Scholar
  3. 3.
    . F. Gebhard, The Mott Metal-Insulator Transition (Springer, Berlin, 1997)Google Scholar
  4. 4.
    . A. Georges, G. Kotliar, W. Krauth, M.J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    . G. Kotliar, D. Vollhardt, Phys. Today 57, 53 (2004)CrossRefGoogle Scholar
  6. 6.
    M. Eckstein, M. Kollar, P. Werner, Phys. Rev. Lett. 103, 056403 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    . M. Schiró, M. Fabrizio, Phys. Rev. Lett. 105, 076401 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    . S.A. Hamerla, G.S. Uhrig, Phys. Rev. B 87, 064304 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    . S.A. Hamerla, G.S. Uhrig, Phys. Rev. B 89, 104301 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    . T. Esslinger, Annu. Rev. Condens. Matter Phys. 1, 129 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    . I. Bloch, J. Dalibard, S. Nascimbène, Nat. Phys. 8, 267 (2012)CrossRefGoogle Scholar
  12. 12.
    M. Lewenstein, A. Sanpera, V. Ahufinger, Ultracold Atoms in Optical Lattices: Simulating quantum many-body systems, 1st edn. (Oxford University Press, Oxford, 2012)Google Scholar
  13. 13.
    . M. Srednicki, Phys. Rev. E 50, 888 (1994)ADSCrossRefGoogle Scholar
  14. 14.
    . J.M. Deutsch, Phys. Rev. A 43, 2046 (1991)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    . M. Rigol, V. Dunjko, M. Olshanii, Nature 452, 854 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    . J. Berges, S. Borsányi, C. Wetterich, Phys. Rev. Lett. 93, 142002 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    . M. Moeckel, S. Kehrein, Phys. Rev. Lett. 100, 175702 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    . M. Moeckel, S. Kehrein, New J. Phys. 12, 055016 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    . M. Kollar, F.A. Wolf, M. Eckstein, Phys. Rev. B 84, 054304 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    . M. Marcuzzi, J. Marino, A. Gambassi, A. Silva, Phys. Rev. Lett. 111, 197203 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    P. Schmidt, H. Monien, arXiv:cond-mat/0202046 [cond-mat.str-el] (2002)
  22. 22.
    . J.K. Freericks, V.M. Turkowski, V. Zlatić, Phys. Rev. Lett. 97, 266408 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    . H. Aoki, N. Tsuji, M. Eckstein, M. Kollar, T. Oka, P. Werner, Rev. Mod. Phys. 86, 779 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    . M. Eckstein, M. Kollar, P. Werner, Phys. Rev. B 81, 115131 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    . F. Hofmann, M. Eckstein, M. Potthoff, Phys. Rev. B 93, 235104 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    . M. Sandri, M. Schiró, M. Fabrizio, Phys. Rev. B 86, 075122 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    . F. Hofmann, M. Eckstein, E. Arrigoni, M. Potthoff, Phys. Rev. B 88, 165124 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    . M. Potthoff, Eur. Phys. J. B 32, 429 (2003)ADSCrossRefGoogle Scholar
  29. 29.
    . M. Potthoff, M. Aichhorn, C. Dahnken, Phys. Rev. Lett. 91, 206402 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    . P. Werner, M. Eckstein, Phys. Rev. B 86, 045119 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    . P. Werner, M. Eckstein, Europhys. Lett. 109, 37002 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    . E. Gull, A.J. Millis, A.I. Lichtenstein, A.N. Rubtsov, M. Troyer, P. Werner, Rev. Mod. Phys. 83, 349 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    . C. Gramsch, K. Balzer, M. Eckstein, M. Kollar, Phys. Rev. B 88, 235106 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    . K. Balzer, Z. Li, O. Vendrell, M. Eckstein, Phys. Rev. B 91, 045136 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    . F.A. Wolf, I.P. McCulloch, U. Schollwöck, Phys. Rev. B 90, 235131 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    . M. Balzer, M. Potthoff, Phys. Rev. B 83, 195132 (2011)ADSCrossRefGoogle Scholar
  37. 37.
    . C. Gramsch, M. Potthoff, Phys. Rev. B 92, 235135 (2015)ADSCrossRefGoogle Scholar
  38. 38.
    . M. Behrmann, M. Fabrizio, F. Lechermann, Phys. Rev. B 88, 035116 (2013)ADSCrossRefGoogle Scholar
  39. 39.
    . C. Huscroft, A.K. McMahan, R.T. Scalettar, Phys. Rev. Lett. 82, 2342 (1999)ADSCrossRefGoogle Scholar
  40. 40.
    . K. Held, C. Huscroft, R.T. Scalettar, A.K. McMahan, Phys. Rev. Lett. 85, 373 (2000)ADSCrossRefGoogle Scholar
  41. 41.
    . K. Held, R. Bulla, Eur. Phys. J. B 17, 7 (2000)ADSCrossRefGoogle Scholar
  42. 42.
    . P.V. Dongen, K. Majumdar, C. Huscroft, F.-C. Zhang, Phys. Rev. B 64, 195123 (2001)ADSCrossRefGoogle Scholar
  43. 43.
    . R. Bulla, M. Potthoff, Eur. Phys. J. B 13, 257 (2000)ADSCrossRefGoogle Scholar
  44. 44.
    . W.F. Brinkman, T.M. Rice, Phys. Rev. B 2, 4302 (1970)ADSCrossRefGoogle Scholar
  45. 45.
    . F. Hofmann, M. Eckstein, M. Potthoff, J. Phys.: Conf. Ser. 696, 012002 (2016)ADSGoogle Scholar
  46. 46.
    R. van Leeuwen, N.E. Dahlen, G. Stefanucci, C.O. Almbladh, U. von Barth, in Time-Dependent Density Functional Theory, edited by M.A.L. Marques, C.A. Ullrich, F. Nogueira, A. Rubio, K. Burke, E.K.U. Gross (Springer, Berlin Heidelberg, 2006), p. 33Google Scholar
  47. 47.
    J. Rammer, Quantum field theory of nonequilibrium states (Cambridge University Press, 2007)Google Scholar
  48. 48.
    C.T. Kelley, Solving nonlinear equations with Newton’s method, in Fundamentals of algorithms (SIAM, 1987)Google Scholar
  49. 49.
    . C.G. Broyden, Math. Comp. 19, 577 (1965)MathSciNetCrossRefGoogle Scholar
  50. 50.
    . E. Lange, Mod. Phys. Lett. B 12, 915 (1998)ADSCrossRefGoogle Scholar
  51. 51.
    . M. Potthoff, Eur. Phys. J. B 36, 335 (2003)ADSCrossRefGoogle Scholar
  52. 52.
    . A. Georges, W. Krauth, Phys. Rev. B 48, 7167 (1993)ADSCrossRefGoogle Scholar
  53. 53.
    . M.J. Rozenberg, G. Kotliar, X.Y. Zhang, Phys. Rev. B 49, 10181 (1994)ADSCrossRefGoogle Scholar
  54. 54.
    K. Požgajčić, arXiv:cond-mat/0407172 [cond-mat. str-el] (2004)
  55. 55.
    . N. Strohmaier, D. Greif, R. Jördens, L. Tarruell, H. Moritz, T. Esslinger, R. Sensarma, D. Pekker, E. Altman, E. Demler, Phys. Rev. Lett. 104, 080401 (2010)ADSCrossRefGoogle Scholar
  56. 56.
    . F. Hofmann, M. Potthoff, Phys. Rev. B 85, 205127 (2012)ADSCrossRefGoogle Scholar
  57. 57.
    . R. Rausch, M. Potthoff, New J. Phys 18, 023033 (2016)ADSCrossRefGoogle Scholar
  58. 58.
    . M. Schiró, M. Fabrizio, Phys. Rev. B 83, 165105 (2011)ADSCrossRefGoogle Scholar
  59. 59.
    . J. Dziarmaga, Adv. Phys. 59, 1063 (2010)ADSCrossRefGoogle Scholar
  60. 60.
    . A. Francuz, J. Dziarmaga, B. Gardas, W.H. Zurek, Phys. Rev. B 93, 075134 (2016)ADSCrossRefGoogle Scholar
  61. 61.
    . G. Moeller, Q. Si, G. Kotliar, M. Rozenberg, D.S. Fisher, Phys. Rev. Lett. 74, 2082 (1995)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.I. Institut für Theoretische Physik, Universität HamburgHamburgGermany

Personalised recommendations