Noise-induced extinction in Bazykin-Berezovskaya population model
- 91 Downloads
- 3 Citations
Abstract
A nonlinear Bazykin-Berezovskaya prey-predator model under the influence of parametric stochastic forcing is considered. Due to Allee effect, this conceptual population model even in the deterministic case demonstrates both local and global bifurcations with the change of predator mortality. It is shown that random noise can transform system dynamics from the regime of coexistence, in equilibrium or periodic modes, to the extinction of both species. Geometry of attractors and separatrices, dividing basins of attraction, plays an important role in understanding the probabilistic mechanisms of these stochastic phenomena. Parametric analysis of noise-induced extinction is carried out on the base of the direct numerical simulation and new analytical stochastic sensitivity functions technique taking into account the arrangement of attractors and separatrices.
Keywords
Statistical and Nonlinear PhysicsReferences
- 1.A.D. Bazykin, Nonlinear Dynamics of Interacting Populations (World Scientific, 1998)Google Scholar
- 2.F. Brauer, C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology (Springer-Verlag, 2001), TAM 40Google Scholar
- 3.P. Turchin, Complex Population Dynamics: a Theoretical/Empirical Synthesis (Princeton University Press, 2003)Google Scholar
- 4.M. Rietkerk, S.C. Dekker, P.C. de Ruiter, J. van de Koppel, Science 305, 1926 (2004)Google Scholar
- 5.R. Lande, S. Engen, B.-E. Saether, Stochastic Population Dynamics in Ecology and Conservation (Oxford University Press, 2003)Google Scholar
- 6.L. Ridolfi, P. D’Odorico, F. Laio, Noise-Induced Phenomena in the Environmental Sciences (Cambridge University Press, 2011)Google Scholar
- 7.W. Horsthemke, R. Lefever, Noise-Induced Transitions (Springer, 1984)Google Scholar
- 8.V.S. Anishchenko, V.V. Astakhov, A.B. Neiman, T.E. Vadivasova, L. Schimansky-Geier, Nonlinear Dynamics of Chaotic and Stochastic Systems. Tutorial and Modern Development (Springer-Verlag, 2007)Google Scholar
- 9.B. Lindner, J. Garcia-Ojalvo, A. Neiman, L. Schimansky-Geier, Phys. Rep. 392, 321 (2004)ADSCrossRefGoogle Scholar
- 10.L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Rev. Mod. Phys. 70, 223 (1998)ADSCrossRefGoogle Scholar
- 11.M.D. McDonnell, N.G. Stocks, C.E.M. Pearce, D. Abbott, Stochastic Resonance: from Suprathreshold Stochastic Resonance to Stochastic Signal Quantization (Cambridge University Press, 2008)Google Scholar
- 12.J.B. Gao, S.K. Hwang, J.M. Liu, Phys. Rev. Lett. 82, 1132 (1999)ADSCrossRefGoogle Scholar
- 13.K. Matsumoto, I. Tsuda, J. Stat. Phys. 31, 87 (1983)ADSMathSciNetCrossRefGoogle Scholar
- 14.Y.-C. Lai, T. Tel, Transient Chaos: Complex Dynamics on Finite Time Scales (Springer, 2011)Google Scholar
- 15.L.J.S. Allen, An Introduction to the Stochastic Process With Applications to Biology (Pearson Education, 2003)Google Scholar
- 16.B. Spagnolo, D. Valenti, A. Fiasconaro, Math. Biosci. Eng. 1, 185 (2004)MathSciNetCrossRefGoogle Scholar
- 17.P. Hänggi, ChemPhysChem 3, 285 (2002)CrossRefGoogle Scholar
- 18.S. Petrovskii, A. Morozov, H. Malchow, M. Sieber, Eur. Phys. J. B 78, 253 (2010)ADSCrossRefGoogle Scholar
- 19.Q. He, M. Mobilia, U.C. Täuber, Eur. Phys. J. B 82, 97 (2011)ADSCrossRefGoogle Scholar
- 20.J. Müller, C. Kuttler, Methods and Models in Mathematical Biology: Deterministic and Stochastic Approaches (Springer, 2015)Google Scholar
- 21.D. Valenti et al., arXiv:1511.07266v2, to be published in Math. Model. Nat. Phenom. (2016)
- 22.S. Kraut, U. Feudel, Phys. Rev. E 66, 015207 (2002)ADSMathSciNetCrossRefGoogle Scholar
- 23.A.L. Kawczyński, B. Nowakowski, Phys. Chem. Chem. Phys. 10, 289 (2008)CrossRefGoogle Scholar
- 24.I. Bashkirtseva, A.B. Neiman, L. Ryashko, Phys. Rev. E 87, 052711 (2013)ADSCrossRefGoogle Scholar
- 25.D.V. Alexandrov, I. Bashkirtseva, L. Ryashko, Eur. Phys. J. B 89, 62 (2016)ADSMathSciNetCrossRefGoogle Scholar
- 26.G.A. van Voorn, L. Hemerik, M.P. Boer, B.W. Kooi, Math Biosci. 209, 451 (2007)MathSciNetCrossRefGoogle Scholar
- 27.W.Z. Lidicker Jr., Open Ecol. J. 3, 71 (2010)CrossRefGoogle Scholar
- 28.B. Dennis, Oikos 96, 389 (2002)CrossRefGoogle Scholar
- 29.J.M. Drake, D.M. Lodge, Biological Invasions 8, 365 (2006).CrossRefGoogle Scholar
- 30.G.-Q. Sun, Z. Jin, L. Li, Q.-X. Liu, J. Biol. Phys. 35, 185 (2009).CrossRefGoogle Scholar
- 31.I. Bashkirtseva, L. Ryashko, Chaos 21, 047514 (2011)ADSCrossRefGoogle Scholar
- 32.E.M. Hart, L. Avilés, PLoS One 9, e110049 (2014)CrossRefGoogle Scholar
- 33.C. Kurrer, K. Schulten, Physica D 50, 311 (1991)ADSMathSciNetCrossRefGoogle Scholar
- 34.M.I. Freidlin, A.D. Wentzell, Random Perturbations of Dynamical Systems (Springer, 1984)Google Scholar
- 35.I. Bashkirtseva, G. Chen, L. Ryashko, Chaos 22, 033104 (2012)ADSMathSciNetCrossRefGoogle Scholar
- 36.L. Ryashko, I. Bashkirtseva, Phys. Rev. E 83, 061109 (2011)ADSCrossRefGoogle Scholar