Polaron assisted charge transfer in model biological systems

Regular Article
  • 52 Downloads

Abstract

We use a tight binding Hamiltonian to simulate the electron transfer from an initial charge-separating exciton to a final target state through a two-arm transfer model. The structure is copied from the model frequently used to describe electron harvesting in photosynthesis (photosystems I). We use this network to provide proof of principle for dynamics, in quantum system/bath networks, especially those involving interference pathways, and use these results to make predictions on artificially realizable systems. Each site is coupled to the phonon bath via several electron-phonon couplings. The assumed large energy gaps and weak tunneling integrals linking the last 3 sites give rise to“Stark Wannier like” quantum localization; electron transfer to the target cluster becomes impossible without bath coupling. As a result of the electron-phonon coupling, local electronic energies relax when the site is occupied, and transient polaronic states are formed as photo-generated electrons traverse the system. For a symmetric constructively interfering two pathway network, the population is shared equally between two sets of equivalent sites and therefore the polaron energy shift is smaller. The smaller energy shift however makes the tunnel transfer to the last site slower or blocks it altogether. Slight disorder (or thermal noise) can break the symmetry, permitting essentially a “one path”, and correspondingly more efficient transfer.

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    T. Berthold et al., J. Am. Chem. Soc. 134, 5563 (2012)CrossRefGoogle Scholar
  2. 2.
    P. Jordan et al., Nature 411, 909 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    P. Fromme, P. Mathis, Photosynthesis Res. 80, 109 (2004)CrossRefGoogle Scholar
  4. 4.
    S. Santabarbara, P. Heathcote, M.C.W. Evans, Biochim. Biophys. Acta 1708, 283 (2005)CrossRefGoogle Scholar
  5. 5.
    F. Rappaport, B.A. Diner, K. Redding, in Photosystem I: the light-driven plastocyanin: ferredoxin oxidoreductase, edited by J.H. Golbeck (Springer, Dordrecht, 2006), pp. 339–360Google Scholar
  6. 6.
    N. Srinivasan, J.H. Golbeck, Biochim. Biophys. Acta 1787, 1057 (2009)CrossRefGoogle Scholar
  7. 7.
    M. Zarea et al., J. Phys. Chem. B 66, 71 (2009)Google Scholar
  8. 8.
    A.A. Kocherzhenko et al., J. Phys. Chem. C 116, 25213 (2012)CrossRefGoogle Scholar
  9. 9.
    N. Renaud et al., J. Phys. Chem. A 117, 5899 (2013)CrossRefGoogle Scholar
  10. 10.
    V.D. Lakhno, J. Biol. Phys. 31, 145 (2005)CrossRefGoogle Scholar
  11. 11.
    V.D. Lakhno, Phys. Chem. Chem. Phys. 4, 2246 (2002)CrossRefGoogle Scholar
  12. 12.
    V. Lakhno, A. Korshunova, Math. Biol. Bioinform. 5, 1 (2010)CrossRefGoogle Scholar
  13. 13.
    M.G. Müller et al., Proc. Natl. Acad. Sci. USA 107, 4123 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    A. Nitzan, Chemical Dynamics in condensed Phases (Oxford University Press, Oxford, 2006)Google Scholar
  15. 15.
    J. Bonča, S.A. Trugman, Phys. Rev. Lett. 75, 2566 (1995)ADSCrossRefGoogle Scholar
  16. 16.
    P. Szymanski, S. Garrett-Roe, C.B. Harris, Prog. Surf. Sci. 78, 1 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    G.-Q. Li, B. Movaghar, A. Nitzan, M.A. Ratner, J. Chem. Phys. 138, 044112 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    G.-Q. Li, B. Movaghar, M.A. Ratner, Phys. Rev. B 87, 094302 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    G.-Q. Li, A. Nitzan, M.A. Ratner, Phys. Chem. Chem. Phys. 14, 14270 (2012)CrossRefGoogle Scholar
  20. 20.
    G.-Q. Li, Phys. Chem. Chem. Phys. 17, 11553 (2015)CrossRefGoogle Scholar
  21. 21.
    G.-Q. Li, B. Movaghar, Eur. Phys. J. B 88, 162 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    G.-Q. Li et al., J. Phys. Chem. Lett. 6, 4889 (2015)CrossRefGoogle Scholar
  23. 23.
    A.F. Amin, G.-Q. Li, A.H. Phillips, U. Kleinekathöfer, Eur. Phys. J. B 68, 103 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    A.J. Heeger, S. Kivelson, J.R. Schreiffer, W.P. Su, Rev. Mod. Phys. 60, 781 (1988)ADSCrossRefGoogle Scholar
  25. 25.
    F.C. Grozema et al., J. Am. Chem. Soc. 130, 5157 (2008)CrossRefGoogle Scholar
  26. 26.
    G. Kopidakis, C.M. Soukoulis, E.N. Economou, Phys. Rev. B 51, 15038 (1995)ADSCrossRefGoogle Scholar
  27. 27.
    D. Emin, Adv. Phys. 22, 57 (1973)ADSCrossRefGoogle Scholar
  28. 28.
    D. Emin, A.M. Kriman, Phys. Rev. B 34, 7278 (1986)ADSCrossRefGoogle Scholar
  29. 29.
    D. Emin, Monatsh. Chem. 144, 3 (2012)CrossRefGoogle Scholar
  30. 30.
    D. Emin, Polarons (University Press, Cambridge, 2012)Google Scholar
  31. 31.
    N. Renaud, M.A. Ratner, V. Mujica, J. Chem. Phys. 135, 075102 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    G. Katz, D. Gelman, M.A. Ratner, R. Kosloff, J. Chem. Phys. 129, 034108 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    P.S. Lomdahl, W.C. Kerr, Phys. Rev. Lett. 55, 1235 (1985)ADSCrossRefGoogle Scholar
  34. 34.
    Y.-S. Chen, S. Bharill, E.Y. Isacoff, M. Chalfie, PNAS 112, 11690 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    Y.-S. Chen, S. Bharill, R. O’Hagan, E.Y. Isacoff, M. Chalfie, G3: Genes Genomes Genetics 6, 1121 (2016)CrossRefGoogle Scholar
  36. 36.
    Y.-S. Chen, S. Bharill, Z. Altun, R. O’Hagan, B. Coblitz, E.Y. Isacoff, M. Chalfie, G3: Genes Genomes Genetics 8, 1272 (2016)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of ChemistryNorthwestern UniversityEvanstonUSA

Personalised recommendations