Optimal selection of nodes to propagate influence on networks

  • Yifan SunEmail author
Regular Article


How to optimize the spreading process on networks has been a hot issue in complex networks, marketing, epidemiology, finance, etc. In this paper, we investigate a problem of optimizing locally the spreading: identifying a fixed number of nodes as seeds which would maximize the propagation of influence to their direct neighbors. All the nodes except the selected seeds are assumed not to spread their influence to their neighbors. This problem can be mapped onto a spin glass model with a fixed magnetization. We provide a message-passing algorithm based on replica symmetrical mean-field theory in statistical physics, which can find the nearly optimal set of seeds. Extensive numerical results on computer-generated random networks and real-world networks demonstrate that this algorithm has a better performance than several other optimization algorithms.


Statistical and Nonlinear Physics 


  1. 1.
    M.S. Granovetter, Am. J. Sociol. 78, 1360 (1973)CrossRefGoogle Scholar
  2. 2.
    E.M. Rogers, Diffusion of Innovation (Free Press, New York, 1995)Google Scholar
  3. 3.
    C. Wei, L.V.S. Lakshmanan, C. Castillo, Information and Influence Propagation in Social Networks (Morgan & Claypool Publishers, 2013)Google Scholar
  4. 4.
    R. Pastor-Satorras, A. Vespignani, Phys. Rev. Lett. 86, 3200 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    R. Cohen, S. Havlin, Complex Networks Structure, Robustness and Function (Cambridge University Press, Cambridge, 2010)Google Scholar
  6. 6.
    V.S. Buldyrev, R. Parshani, G. Paul, H.E. Stanley, S. Havlin, Nature 464, 1025 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    M. Elliott, B. Golub, M.O. Jackson, Am. Econom. Rev. 104, 3115 (2014)CrossRefGoogle Scholar
  8. 8.
    Y. Chen, G. Paul, S. Havlin, F. Liljeros, H.E. Stanley, Phys. Rev. Lett. 101, 058701 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    V.M. Preciado, M. Zargham, C. Enyioha, A. Jadbabaie, G. Pappas, in 52nd IEEE Conference on Decision and Control, Florence, 2013, pp. 7486–7491Google Scholar
  10. 10.
    C.M. Schneider, T. Mihaljev, S. Havlin, H.J. Herrmann, Phys. Rev. E 84, 061911 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    F. Morone, H.A. Makse, Nature 524, 65 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    P. Domingos, M. Richardson, in Proceedings of the 7th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, San Francisco, CA, 2001 (ACM Press, New York), pp. 57–66Google Scholar
  13. 13.
    D. Kempe, M. Kleinberg, É. Tardos, in Proceedings of the 9th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, D.C., 2003 (ACM Press, New York), pp. 137–146Google Scholar
  14. 14.
    F. Altarelli, A. Braunstein, L. Dall’Asta, J. Wakeling, R. Zecchina, Phys. Rev. X 4, 021024 (2014)Google Scholar
  15. 15.
    D.J. Watts, Proc. Natl. Acad. Sci. USA 99, 5766 (2006)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    M. Richardson, P. Domingos, in Proceedings of the 8th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Edmonton, AB, Canada, 2002 (ACM Press, New York), pp. 61–64Google Scholar
  17. 17.
    W. Chen, C. Wang, Y.J. Wang, in Proceedings of the 10th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Seattle, WA, USA, 2004 (ACM Press, New York), pp. 1029–1038Google Scholar
  18. 18.
    Y.Q. Hu, S.G. Ji, L. Feng, S. Havlin, Y.L. Jin, arXiv:1509.03484 (2015)
  19. 19.
    F. Altarelli, A. Braunstein, L. Dall’Asta, R. Zecchina, J. Stat. Mech.: Theor. Exp. 2013, P09001 (2013)MathSciNetCrossRefGoogle Scholar
  20. 20.
    T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs (CRC Press, New York, 1988)Google Scholar
  21. 21.
    Y. Yang, J. Wang, A.E. Motter, Phys. Rev. Lett. 109, 258701 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    J.C. Nacher, T. Akutsu, Methods 102, 57 (2016)CrossRefGoogle Scholar
  23. 23.
    S. Wuchty, Proc. Natl. Acad. Sci. USA 111, 7156 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    S. Ivan, in Proceedings of the International Parallel and Distributed Processing Symposium, Florida, USA, 2002 (IEEE Computer Society, Washington, D.C.), p. 0148bGoogle Scholar
  25. 25.
    Y.F. Sun, H.J. Zhou, Sci. Rep. 6, 32502 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    T.N. Dinh, D.T. Nguyen, M.T. Thai, A Unified Approach for Domination Problems on Different Network Topologies, in Handbook of Combinatorial Optimization, edited by P.M. Parddalos et al. (Springer, New York, 2013), pp. 1–40Google Scholar
  27. 27.
    J.H. Zhao, Y. Habibulla, H.J. Zhou, J. Stat. Phys. 9, 1154 (2014)MathSciNetGoogle Scholar
  28. 28.
    F. Wang, E. Camacho, L. Xu, Lect. Notes Comput. Sci. 5573, 313 (2009)MathSciNetCrossRefGoogle Scholar
  29. 29.
    F. Wang, H.W. Hong, E. Camacho, L. Xu, W. Lee, Y. Shi, S. Shan, Theor. Comput. Sci. 412, 265 (2011)CrossRefGoogle Scholar
  30. 30.
    P. Šulc, L. Zdeborová, J. Phys. A 43, 285003 (2010)MathSciNetCrossRefGoogle Scholar
  31. 31.
    H.A. Bethe, Proc. R. Soc. London A 150, 552 (1935)ADSCrossRefGoogle Scholar
  32. 32.
    M. Mézard, G. Parisi, Eur. Phys. J. B 20, 217 (2001)ADSCrossRefGoogle Scholar
  33. 33.
    J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference (Morgan Kaufmann Publishers Inc., San Francisco, 1988)Google Scholar
  34. 34.
    M. Mézard, A. Montanari, Information, Physics, and Computation (Oxford University Press, New York, 2009)Google Scholar
  35. 35.
    K.I. Goh, B. Kahng, D. Kim, Phys. Rev. Lett. 87, 278701 (2001)ADSCrossRefGoogle Scholar
  36. 36.
    R.M. Karp, Reducibility Among Combinatorial Problems, in Complexity of Computer Computations, edited by R.E. Miller, J.W. Thatcher (Plenum, New York, 1972), pp. 85–103Google Scholar
  37. 37.
    S. Mugisha, H.J. Zhou, Phys. Rev. E 94, 012305 (2016)ADSCrossRefGoogle Scholar
  38. 38.
    A. Braunstein, L. Dall’Asta, G. Semerjian, L. Zdeborová, arXiv:1603.08883 (2016)
  39. 39.
    P. Clusella, P. Grassberger, F.J. Pérez-Reche, A. Politi, arXiv:1604.00073 (2016)
  40. 40.
    L. Zdeborova, P. Zhang, H.J. Zhou, arXiv:1607.03276 (2016)
  41. 41.
    J. Leskovec, J. Kleinberg, C. Faloutsos, ACM Trans. Knowledge Discovery from Data 1, 2 (2007)CrossRefGoogle Scholar
  42. 42.
    J. Yang, J. Leskovec, Knowledge and Information Systems 42, 745 (2012)Google Scholar
  43. 43.
    J. Leskovec, L. Lang, A. Dasgupta, M. Mahoney, Internet Mathematics 6, 29 (2009)MathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Center of Applied Statistics, School of Statistics, Renmin University of ChinaBeijingP.R. China

Personalised recommendations