Engines with ideal efficiency and nonzero power for sublinear transport laws

  • Jesper KoningEmail author
  • Joseph O. Indekeu
Regular Article


It is known that an engine with ideal efficiency (η = 1 for a chemical engine and e = e Carnot for a thermal one) has zero power because a reversible cycle takes an infinite time. However, at least from a theoretical point of view, it is possible to conceive (irreversible) engines with nonzero power that can reach ideal efficiency. Here this is achieved by replacing the usual linear transport law by a sublinear one and taking the step-function limit for the particle current (chemical engine) or heat current (thermal engine) versus the applied force. It is shown that in taking this limit exact thermodynamic inequalities relating the currents to the entropy production are not violated.


Statistical and Nonlinear Physics 


  1. 1.
    N. Shiraishi, K. Saito, H. Tasaki, Phys. Rev. Lett. 117, 190601 (2016)ADSCrossRefGoogle Scholar
  2. 2.
    M. Polettini, G. Verley, M. Esposito, Phys. Rev. Lett. 114, 050601 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    M. Campisi, R. Fazio, Nat. Commun. 7, 11895 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    M. Mintchev, L. Santoni, P. Sorba, arXiv:1310.2392 (2013)
  5. 5.
    A.E. Allahverdyan, K.V. Hovhannisyan, A.V. Melkikh, S.G. Gevorkian, Phys. Rev. Lett. 111, 050601 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    B. Leggio, M. Antezza, Phys. Rev. E 93, 022122 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    M. Esposito, J.M.R. Parrondo, Phys. Rev. E 91, 052114 (2015)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    F. Curzon, B. Ahlborn, Am. J. Phys. 43, 22 (1975)ADSCrossRefGoogle Scholar
  9. 9.
    L. Chen, C. Sun, C. Wu, J. Yu, Energy Convers. Manage. 38, 1841 (1997)CrossRefGoogle Scholar
  10. 10.
    H. Hooyberghs, B. Cleuren, A. Salazar, J.O. Indekeu, C. Van den Broeck, J. Chem. Phys. 139, 134111 (2013); see also the Publisher’s note, J. Chem. Phys. 140, 209901 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    C. Van den Broeck, Phys. Rev. Lett. 95, 190602 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    C. Van den Broeck, N. Kumar, K. Lindenberg, Phys. Rev. Lett. 108, 210602 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    C. Van den Broeck, Europhys. Lett. 101, 10006 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    M. Moreau, Y. Pomeau, Eur. Phys. J. Special Topics 224, 769 (2015), and other papers in the same Special Topics issueADSCrossRefGoogle Scholar
  15. 15.
    M.A. Anisimov, Int. J. Thermophys. 32, 2001 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    J.V. Sengers, Int. J. Thermophys. 6, 203 (1985)ADSCrossRefGoogle Scholar
  17. 17.
    J.V. Sengers, R.A. Perkins, Transport Properties of Fluids: Advances in Transport Properties (Royal Society of Chemistry, 2014)Google Scholar
  18. 18.
    Jan Naudts (private communication)Google Scholar
  19. 19.
    Y. Wang, Z.C. Tu, Europhys. Lett. 98, 40001 (2012)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.KU Leuven, Instituut voor Theoretische Fysica – Celestijnenlaan 200DLeuvenBelgium

Personalised recommendations