Advertisement

Dynamic shot noise in a quantum dot coupled with Majorana fermions under the perturbation of microwave fields

  • Hong-Kang ZhaoEmail author
  • Jian Zhang
  • Jian Wang
Regular Article
  • 102 Downloads

Abstract

The dynamic properties of a quantum dot (QD) coupled with Majorana fermions under the perturbation of microwave fields (MWFs) have been investigated through the nonequilibrium Green’s function (NGF) technique. The photon-assisted differential conductance, current, shot noise, and Fano factor have been evaluated in the Nambu representation. The normal electron tunneling and Andreev reflections contribute to the transport effectively, and novel conductance peaks appear around each photon-induced side channel. The shot noise is enhanced by increasing the interaction strength of Majorana fermions evidently, while it is suppressed accompanying with peak-valley structures by the MWFs. For the symmetric transmission where the QD energy E d = 0, terminal current disappears when the source-drain bias eV is removed. For the asymmetric transmission where E d ≠ 0, there exists nonzero pumping current induced by the applied MWF. The saturate pumping current increases with increasing E d as eV = 0 and E d ≠ 0, but the shot noise increases with decreasing E d . As the coupling energy between the Majorana fermions becomes zero, the Fano factor reaches the robust value F ≈ 0.38 as eV → 0.

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    A.Y. Kitaev, Phys. Usp. 44, 131 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    X.L. Qi, S.C. Zhang, Rev. Mod. Phys. 83, 1057 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    C. Nayak, S.H. Simon, A. Stern, M. Freedman, S.D. Sarma, Rev. Mod. Phys. 80, 1083 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    M.Z. Hasan, C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    J. Alicea, Phys. Rev. B 81, 125318 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    M. Sato, S. Fujimoto, Phys. Rev. B 79, 094504 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    P. Ghosh, J.D. Sau, S. Tewari, S.D. Sarma, Phys. Rev. B 82, 184525 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    J. Alicea, Y. Oreg, G. Refael, F.V. Oppen, M.P.A. Fisher, Nat. Phys. 7, 412 (2011)CrossRefGoogle Scholar
  9. 9.
    L. Fu, C.L. Kane, Phys. Rev. Lett. 100, 096407 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    J.D. Sau, R.M. Lutchyn, S. Tewari, S.D. Sarma, Phys. Rev. Lett. 104, 040502 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    K.T. Law, P.A. Lee, T.K. Ng, Phys. Rev. Lett. 103, 237001 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    Y. Tanaka, T. Yokoyama, N. Nagaosa, Phys. Rev. Lett. 103, 107002 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    R.M. Lutchyn, J.D. Sau, S.D. Sarma, Phys. Rev. Lett. 105, 077001 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    Y. Oreg, G. Refael, F. von Oppen, Phys. Rev. Lett. 105, 177002 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    J. Liu, A.C. Potter, K.T. Law, P.A. Lee, Phys. Rev. Lett. 109, 267002 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, H. Shtrikman, Nat. Phys. 8 , 887 (2012)CrossRefGoogle Scholar
  17. 17.
    V. Mourik, K. Zuo, S.M. Frolov, S.R. Plissard, E.P.A.M. Bakkers, L.P. Kouwenhoven, Science 336, 1003 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    M.T. Deng, C.L. Yu, G.Y. Huang, M. Larsson, P. Caroff, H.Q. Xu, Nano Lett. 12, 6414 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    H.Y. Hui, P.M.R. Brydon, J.D. Sau, S. Tewari, S.D. Sarma, Sci. Rep. 5, 8880 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    S. Nadj-Perge, I.K. Drozdov, J. Li, H. Chen, S. Jeon, J. Seo, A.H. MacDonald, B.A. Bernevig, A. Yazdani, Science 346, 602 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    L.P. Rokhinson, X. Liu, J.K. Furdyna, Nat. Phys. 8, 795 (2012)CrossRefGoogle Scholar
  22. 22.
    Ya.M. Blanter, M. Büttiker, Phys. Rep. 336, 1 (2000)ADSCrossRefGoogle Scholar
  23. 23.
    W. Schottky, Ann. Phys. 57, 541 (1918)CrossRefGoogle Scholar
  24. 24.
    X. Jehl, M. Sanquer, R. Calemczuk, D. Mailly, Nature 405, 50 (2000)ADSCrossRefGoogle Scholar
  25. 25.
    R. de-Picciotto, M. Reznikov, M. Heiblum, V. Umansky, G. Bunin, D. Mahalu, Nature 389, 162 (1997)ADSCrossRefGoogle Scholar
  26. 26.
    M. Reznikov, R. de Picciotto, T.G. Griffiths, M. Heiblum, V. Umansky, Nature 399, 238 (1999)ADSCrossRefGoogle Scholar
  27. 27.
    E. Comforti, Y.C. Chung, M. Heiblum, V. Umansky, D. Mahalu, Nature 416, 515 (2002)ADSCrossRefGoogle Scholar
  28. 28.
    M. Dolev, M. Heiblum, V. Umansky, A. Stern, D. Mahalu, Nature 452, 829 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    A. Thielmann, M.H. Hettler, J. König, G. Schön, Phys. Rev. Lett. 95, 146806 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    D. Li, L. Zhang, F. Xu, J. Wang, Phys. Rev. B 85, 165402 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    O.M. Bulashenko, J.M. Rubí, Phys. Rev. B 64, 045307 (2001)ADSCrossRefGoogle Scholar
  32. 32.
    O.M. Bulashenko, J.M. Rubí, Phys. Rev. B 67, 115322 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    C.W.J. Beenakker, H. Schomerus, Phys. Rev. Lett. 93, 096801 (2004)ADSCrossRefGoogle Scholar
  34. 34.
    T. Chen, J.M.J. Madey, Phys. Rev. Lett. 86, 5906 (2001)ADSCrossRefGoogle Scholar
  35. 35.
    S. Nakamura, M. Hashisaka, Y. Yamauchi, S. Kasai, T. Ono, K. Kobayashi, Phys. Rev. B 79, 201308(R) (2009)ADSCrossRefGoogle Scholar
  36. 36.
    S. Kafanov, P. Delsing, Phys. Rev. B 80, 155320 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    N.Y. Kim, P. Recher, W.D. Oliver, Y. Yamamoto, J. Kong, H. Dai, Phys. Rev. Lett. 99, 036802 (2007)ADSCrossRefGoogle Scholar
  38. 38.
    R.J. Schoelkopf, A.A. Kozhevnikov, D.E. Prober, M.J. Rooks, Phys. Rev. Lett. 80, 2437 (1998)ADSCrossRefGoogle Scholar
  39. 39.
    A.A. Kozhevnikov, R.J. Schoelkopf, D.E. Prober, Phys. Rev. Lett. 84, 3398 (2000)ADSCrossRefGoogle Scholar
  40. 40.
    Q.F. Sun, J. Wang, T.H. Lin, Phys. Rev. B 61, 13032 (2000)ADSCrossRefGoogle Scholar
  41. 41.
    H.K. Zhao, J. Wang, Eur. Phys. J. B 59, 329 (2007)ADSCrossRefGoogle Scholar
  42. 42.
    V.S. Rychkov, M.L. Polianski, M. Büttiker, Phys. Rev. Lett. 72, 155326 (2005)Google Scholar
  43. 43.
    S. Camalet, S. Kohler, P. Hänggi, Phys. Rev. B 70, 155326 (2004)ADSCrossRefGoogle Scholar
  44. 44.
    S. Kohler, J. Lehmann, P. Hänggi, Phys. Rep. 406, 379 (2005)ADSCrossRefGoogle Scholar
  45. 45.
    J. Huneke, G. Platero, S. Kohler, Phys. Rev. Lett. 110, 036802 (2013)ADSCrossRefGoogle Scholar
  46. 46.
    B.H. Wu, J.C. Cao, Phys. Rev. B 81, 085327 (2010)ADSCrossRefGoogle Scholar
  47. 47.
    H.K. Zhao, Phys. Rev. B 63, 205327 (2001)ADSCrossRefGoogle Scholar
  48. 48.
    Z. Ma, Y. Zhu, X.Q. Li, T.H. Lin, Z.B. Su, Phys. Rev. B 69, 045302 (2004)ADSCrossRefGoogle Scholar
  49. 49.
    H.K. Zhao, J. Wang, Phys. Rev. B 74, 245401 (2006)ADSCrossRefGoogle Scholar
  50. 50.
    H.K. Zhao, J. Zhangn, J. Wang, Europhys. Lett. 109, 18003 (2015)ADSCrossRefGoogle Scholar
  51. 51.
    Q. Chen, H.K. Zhao, Europhys. Lett. 82, 68004 (2008)ADSCrossRefGoogle Scholar
  52. 52.
    H.K. Zhao, L.L. Zhao, Europhys. Lett. 93, 28004 (2011)ADSCrossRefGoogle Scholar
  53. 53.
    H.K. Zhao, L.L. Zhao, J. Wang, Eur. Phys. J. B 77, 441 (2010)ADSCrossRefGoogle Scholar
  54. 54.
    H.K. Zhao, W.K. Zou, Q. Chen, J. Appl. Phys. 116, 093702 (2014)ADSCrossRefGoogle Scholar
  55. 55.
    W.K. Zou, H.K. Zhao, Eur. Phys. J. B 88, 210 (2015)ADSMathSciNetCrossRefGoogle Scholar
  56. 56.
    J. Nilsson, A.R. Akhmerov, C.W.J. Beenakker, Phys. Rev. Lett. 101, 120403 (2008)ADSCrossRefGoogle Scholar
  57. 57.
    B.H. Wu, J.C. Cao, Phys. Rev. B 85, 085415 (2012)ADSCrossRefGoogle Scholar
  58. 58.
    P. Wang, Y. Cao, M. Gong, G. Xiong, X.Q. Li, Europhys. Lett. 103, 57016 (2013)ADSCrossRefGoogle Scholar
  59. 59.
    Y. Cao, P. Wang, G. Xiong, M. Gong, X.Q. Li, Phys. Rev. B 86, 115311 (2012)ADSCrossRefGoogle Scholar
  60. 60.
    Q. Chen, K.Q. Chen, H.K. Zhao, J. Phys.: Condens. Matter 26, 315011 (2014)ADSGoogle Scholar
  61. 61.
    Q. Chen, H.K. Zhao, H.Q. Xu, Solid State Commun. 208, 21 (2015)ADSCrossRefGoogle Scholar
  62. 62.
    D.E. Liu, H.U. Baranger, Phys. Rev. B 84, 201308(R) (2011)ADSCrossRefGoogle Scholar
  63. 63.
    D.E. Liu, A. Levchenko, R.M. Lutchyn, Phys. Rev. B 92, 205422 (2015)ADSCrossRefGoogle Scholar
  64. 64.
    B. Zocher, B. Rosenow, Phys. Rev. Lett. 111, 036802 (2013)ADSCrossRefGoogle Scholar
  65. 65.
    A.L. Yeyati, F.S. Bergeret, A. Martín-Rodero, T.M. Klapwijk, Nat. Phys. 3, 455 (2007)CrossRefGoogle Scholar
  66. 66.
    A.P. Jauho, N.S. Wingreen, Y. Meir, Phys. Rev. B 50, 5528 (1994)ADSCrossRefGoogle Scholar
  67. 67.
    H.K. Zhao, J. Wang, Q. Wang, Europhys. Lett. 99, 48005 (2012)CrossRefGoogle Scholar
  68. 68.
    H.K. Zhao, J. Wang, Q. Wang, Phys. Lett. A 378, 1553 (2014)ADSCrossRefGoogle Scholar
  69. 69.
    E. Zakka-Bajjani, J. Ségala, F. Portier, P. Roche, D.C. Glattli, A. Cavanna, Y. Jin, Phys. Rev. Lett. 99, 236803 (2007)ADSCrossRefGoogle Scholar
  70. 70.
    T.H. Oosterkamp, T. Fujisawa, W.G. van der Wiel, K. Ishibashi, R.V. Hijman, S. Tarucha, L.P. Kouwenhoven, Nature 395, 873 (1998)ADSCrossRefGoogle Scholar
  71. 71.
    R.H. Blick, R.J. Haug, D.W. van der Weide, K. Von Klitzing, K. Eberl, Appl. Phys. Lett. 67, 3924 (1995)ADSCrossRefGoogle Scholar
  72. 72.
    T.D. Stanescu, S. Tewari, J. Phys.: Condens. Matter 25, 233201 (2013)ADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.School of Physics, Beijing Institute of TechnologyBeijingP.R. China
  2. 2.Department of PhysicsThe University of Hong KongHong KongP.R. China

Personalised recommendations