Advertisement

Ab-initio study of structural, elastic, thermal, electronic and magnetic properties of quaternary Heusler alloys CoMnCrZ (Z = Al, As, Si, Ge)

  • Mohamed Walid Mohamedi
  • Abbes Chahed
  • Amina Amar
  • Habib Rozale
  • Abdelaziz Lakdja
  • Omar Benhelal
  • Adlane Sayede
Regular Article

Abstract

First-principles approach is used to study the structural, electronic and magnetic properties of CoMnCrZ (Z = Al, Si, Ge and As) quaternary Heusler compounds, using full-potential linearized augmented plane wave (FP-LAPW) scheme within the generalized gradient approximation (GGA). The computed equilibrium lattice parameters agree well with the available theoretical data. The obtained negative formation energy shows that CoMnCrZ (Z = Al, Si, Ge, As) compounds have strong structural stability. The elastic constants C ij are calculated using the total energy variation with strain technique. The polycrystalline elastic moduli (namely: the shear modulus, Young’s modulus, Poisson’s ratio, sound velocities, Debye temperature and melting temperature were derived from the obtained single-crystal elastic constants. The ductility mechanism for the studied compounds is discussed via the elastic constants C ij . Our calculations with the GGA approximation predict that CoMnCrGe, CoMnCrAl, CoMnCrSi and CoMnCrAs are half-metallic ferrimagnets (HMFs) with a half-metallic gap E HM of 0.03 eV, 0.19 eV, 0.34 eV and 0.50 eV for, respectively. We also find that the half-metallicity is maintained on a wide range of lattice constants.

Keywords

Solid State and Materials 

References

  1. 1.
    J.M.D. Coey, M. Venkatesan, M.A. Bari, in Lectures Notes in Physics (Springer-Verlag, Heidelberg, 2002), Vol. 595Google Scholar
  2. 2.
    I. Zutic, J. Fabian, S.D. Sharma, Rev. Mod. Phys. 76, 323 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    R.A. de Groot, F.M. Muller, P.G. van Engen, K.H.J. Buschow, Phys. Rev. Lett. 50, 2024 (1983)ADSCrossRefGoogle Scholar
  4. 4.
    K.A. Kilian, R.H. Victora, J. Appl. Phys. 87, 7064 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    C.T. Tanaka, J. Nowak, J.S. Moodera, J. Appl. Phys. 86, 6239 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    C. Hordequin, J.P. Nozieres, J. Pierre, J. Magn. Magn. Mater. 183, 225 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    P.J. Webster, K.R.A. Ziebeck, in: Alloys and Compounds of d-Elements with Main Group Elements, Part 2, New Series, Group III, edited by H.R.J. Wijn, Landolt-Bornstein, Pt.c (Springer- Verlag, Berlin, 1998), Vol. 19Google Scholar
  8. 8.
    M. Halder, S.M. Yusuf, A. Kumar, A.K. Nigam, L. Keller, Phys. Rev. B 84, 094435 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    B.L. Ahuja, A. Dashora, S. Tiwari, H.S. Mund, M. Halder, S.M. Yusuf, M. Itou, Y. Sakurai, J. Appl. Phys. 111, 033914 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    M.D. Mukadam, S.M. Yusuf, P. Bhatt, J. Appl. Phys. 113, 173911 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    L. Pal, K.G. Suresh, A.K. Nigam, J. Appl. Phys. 113, 093904 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    P. Klaer, M. Kallmayer, C.G.F. Blum, T. Graf, J. Barth, B. Balke, G.H. Fecher, C. Felser, H.J. Elmers, Phys. Rev. B 80, 144405 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    T. Graf, C. Felsler, S.P.P. Parkin, Prog. Solid State Chem. 39, 1 (2011)CrossRefGoogle Scholar
  14. 14.
    V. Alijani et al., Phys. Rev. B 84, 224416 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    P. Klaer, B. Balke, V. Alijani, J. Winterlik, G.H. Fecher, C. Felser, H.J. Elmers, Phys. Rev. B 84, 14413 (2011)CrossRefGoogle Scholar
  16. 16.
    G.Y. Gao, L. Hu, K.L. Yao, Bo. Luo, Na Liu, J. Alloys Compd. 551, 539 (2013)CrossRefGoogle Scholar
  17. 17.
    J. Nehra, V.D. Sudheesh, N. Lakshmi, K. Venugopalan, Phys. Status Solidi (RRL) 7, 289 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    G.Z. Xu, E.K. Liu, Y. Du, G.J. Li, G.D. Liu, W.H. Wang, G.H. Wu, Europhys. Lett. 102, 17007 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    L. Bainsla, A.I. Mallick, M.M. Raja, A.K. Nigam, B.S.D.Ch.S. Varaprasad, Y.K. Takahashi, Aftab Alam, K.G. Suresh, K. Hono, Phys. Rev. B 91, 104408 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    X.L. Wang, Phys. Rev. Lett. 100, 156404 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    S. Ouardi, G.H. Fecher, C. Felser, J. Kubler, Phys. Rev. Lett. 110, 100401 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    G.Y. Gao, K.-L. Yao, Appl. Phys. Lett. 103, 232409 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    K.L. Yao, G.Y. Gao, Z.L. Liu, L. Zhu, Solid State Commun. 133, 301 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    D. Orgassa, H. Fujiwara, T.C. Schulthess, W.H. Butler, Phys. Rev. B 60, 13237 (1999)ADSCrossRefGoogle Scholar
  25. 25.
    Y. Sakuraba et al., Appl. Phys. Lett. 88, 192508 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864 (1964)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    W. Kohn, L.J. Sham, Phys. Rev. A 140, 1133 (1965)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    E. Wimmer, H. Krakauer, M. Weinert, A.J. Freeman, Phys. Rev. B 24, 864 (1981)ADSCrossRefGoogle Scholar
  29. 29.
    H.J.F. Jansen, A.J. Freeman, Phys. Rev. B 30, 561 (1984)ADSCrossRefGoogle Scholar
  30. 30.
    P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, An Augmented Plane Wave+Local Orbitals Program for Calculating Crystal Properties (Technische Universität Wien, Austria, 2001)Google Scholar
  31. 31.
    J.P. Perdew, S. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  32. 32.
    Xu Dai, G. Liu, G.H. Fecher, C. Felser, Y. Li, H. Liu, J. Appl. Phys. 105, 07E901 (2009)Google Scholar
  33. 33.
    K. Özdoǧan, E. Şasıoǧlu, I. Galanakis, J. Appl. Phys. 113, 193903 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    F.D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1947)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    R. Hill, Proc. Phys. Soc. London A 65, 349 (1952)ADSCrossRefGoogle Scholar
  36. 36.
    W. Voigt, Lehrbuch der Kristallphysik (Teubner, Leipzig, 1928)Google Scholar
  37. 37.
    A. Russ, A. Angew, Mater. Phys. 9, 49 (1929)Google Scholar
  38. 38.
    H. Fu, D. Li, F. Peng, T. Gao, X. Cheng, Comput. Mater. Sci. 44, 774 (2008)CrossRefGoogle Scholar
  39. 39.
    S.F. Pugh, Philos. Mag. 45, 823 (1954)CrossRefGoogle Scholar
  40. 40.
    O.L. Anderson, J. Phys. Chem. Solids 24, 909 (1963)ADSCrossRefGoogle Scholar
  41. 41.
    E. Schreiber, O.L. Anderson, N. Soga, Elastic Constants and their Measurement (McGraw-Hill, NewYork, 1973)Google Scholar
  42. 42.
    M.E. Fine, M.D. Brown, H.L. Marcus, Scr. Metall 18, 951 (1984)CrossRefGoogle Scholar
  43. 43.
    I. Galanakis, P. Mavropoulos, Phys. Rev. B 67, 104417 (2003)ADSCrossRefGoogle Scholar
  44. 44.
    I. Galanakis, P. Mavropoulos, P.H. Dederichs, J. Phys. D 39, 765 (2006)ADSCrossRefGoogle Scholar
  45. 45.
    I. Galanakis, K. Özdoǧan, E. Şasıoǧlu, J. Phys.: Condens. Matter 26, 086003 (2014)ADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Mohamed Walid Mohamedi
    • 1
  • Abbes Chahed
    • 1
  • Amina Amar
    • 1
  • Habib Rozale
    • 1
  • Abdelaziz Lakdja
    • 1
  • Omar Benhelal
    • 1
  • Adlane Sayede
    • 2
  1. 1.Condensed Matter and sustainable development Laboratory (LMCDD), University of Sidi Bel-AbbesSidi Bel-AbbesAlgeria
  2. 2.UCCS, CNRS-UMR 8181, Université d’Artois, Faculté des Sciences Jean PerrinLens CedexFrance

Personalised recommendations