Advertisement

Soliton assisted control of source to drain electron transport along natural channels – crystallographic axes – in two-dimensional triangular crystal lattices

  • A. P. Chetverikov
  • W. Ebeling
  • M. G. VelardeEmail author
Regular Article

Abstract

We present computational evidence of the possibility of fast, supersonic or subsonic, nearly loss-free ballistic-like transport of electrons bound to lattice solitons (a form of electron surfing on acoustic waves) along crystallographic axes in two-dimensional anharmonic crystal lattices. First we study the structural changes a soliton creates in the lattice and the time lapse of recovery of the lattice. Then we study the behavior of one electron in the polarization field of one and two solitons with crossing pathways with suitably monitored delay. We show how an electron surfing on a lattice soliton may switch to surf on the second soliton and hence changing accordingly the direction of its path. Finally we discuss the possibility to control the way an excess electron proceeds from a source at a border of the lattice to a selected drain at another border by following appropriate straight pathways on crystallographic axes.

Keywords

Solid State and Materials 

References

  1. 1.
    M. Toda, Theory of Nonlinear Lattices, 2nd edn. (Springer-Verlag, New York, 1989)Google Scholar
  2. 2.
    A.P. Chetverikov, W. Ebeling, G. Röpke, M.G. Velarde, Eur. Phys. J. B 87, 153 (2014)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    A.P. Chetverikov, W. Ebeling, M.G. Velarde, Eur. Phys. J. B 70, 217 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    A.P. Chetverikov, W. Ebeling, M.G. Velarde, Eur. Phys. J. B 80, 137 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    D. Hennig, A.P. Chetverikov, M.G. Velarde, W. Ebeling, Phys. Rev. E 76, 046602 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    M.P. Shaw, V.N. Mitin, E. Schöll, H.L. Grubin, The Physics of Instabilities in Solid State Electron Devices (Springer, Berlin, 1992)Google Scholar
  7. 7.
    M.G. Velarde, A.P. Chetverikov, W. Ebeling, S.V. Dmitriev, V.D. Lakhno, Proc. Estonian Acad. Sci. 64, 396 (2015)CrossRefGoogle Scholar
  8. 8.
    B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Nat. Nanotechnol. 6, 147 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    A.C. Ferrari et al., Nanoscale 7, 4598 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    R. Hoffmann, Angew. Chem. Int. Ed. 52, 93 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    L. Tao, E. Cinquanta, D. Chiappe, C. Grazianetti, M. Fanciulli, M. Dubey, A. Molle, D. Akinwande, Nat. Nanotechnol. 10, 227 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    F.-F. Zhu, W.-J. Chen, Y. Xu, C.-I. Gao, D.-D. Guan, C.-H. Liu, D. Qian, S.-C. Zhang, J.-F. Jia, Nat. Mater. 14, 1020 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    J. Dancz, S.A. Rice, J. Chem. Phys. 67, 1418 (1977)ADSCrossRefGoogle Scholar
  14. 14.
    T.J. Rolfe, S.A. Rice, J. Dancz, J. Chem. Phys. 70, 26 (1979)ADSCrossRefGoogle Scholar
  15. 15.
    A.P. Chetverikov, W. Ebeling, M.G. Velarde, Physica D 240, 1954 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    A.A. Minzoni, N.F. Smyth, Wave Motion 24, 291 (1996)MathSciNetCrossRefGoogle Scholar
  17. 17.
    A.S. Davydov, Solitons in Molecular Systems, 2nd edn. (Reidel, Dordrecht, 1991)Google Scholar
  18. 18.
    J.-P. Launay, M. Verdaguer, Electrons in Molecules. From Basic Principles to Molecular Electronics (Oxford University Press, Oxford, 2013)Google Scholar
  19. 19.
    M.G. Velarde, J. Comp. Appl. Math. 233, 1432 (2010)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    J.C. Slater, in Quantum Theory of Molecular and Solids. The Self-Consistent Field for Molecules and Solids (McGraw-Hill, New York, 1974), Vol. 4Google Scholar
  21. 21.
    O.G. Cantu Ros, L. Cruzeiro, M.G. Velarde, W. Ebeling, Eur. Phys. J. B 80, 545 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    V.I. Nayanov, I.A. Vasilev, Sov. Phys. Solid State 25, 1430 (1983)Google Scholar
  23. 23.
    V.I. Nayanov, J. Exp. Theor. Phys. Lett. 44, 314 (1986)Google Scholar
  24. 24.
    A.P. Mayer, Phys. Rep. 256, 237 (1995)ADSCrossRefGoogle Scholar
  25. 25.
    M. Streibl, A. Wixforth, J.P. Kotthaus, A.O. Govorov, C. Kadow, A.C. Gossard, Appl. Phys. Lett 75, 4139 (1999)ADSCrossRefGoogle Scholar
  26. 26.
    A.P. Mayer, Ultrasonics 48, 478 (2008)CrossRefGoogle Scholar
  27. 27.
    Z. Insepov, E. Emelin, O. Kononenko, D.V. Roshchupkin, K.B. Tnyshtykbayev, K.A. Baigarin, Appl. Phys. Lett. 106, 023505 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    A. Vikström, Low Temp. Phys. 41, 293 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    J.S. Zmuidzinas, Phys. Rev. B 17, 3919 (1978)ADSCrossRefGoogle Scholar
  30. 30.
    A. Ranciaro Neto, M.O. Sales, F.A.B.F. de Moura, Solid State Commun. 229, 22 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    A. Ranciaro Neto, F.A.B.F. de Moura, Commun. Nonlinear Sci. Numer. Simulat. 40, 6 (2016)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    S. Hermelin, S. Takada, M. Yamamoto, S. Tarucha, A.D. Wieck, L. Saminadayar, C. Bäuerle, T. Meunier, Nature 477, 435 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    R.P.G. McNeil, M. Kataoka, C.J.B. Ford, C.H.W. Barnes, D. Anderson, G.A.C. Jones, I. Farrer, D.A. Ritchie, Nature 477, 439 (2011)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • A. P. Chetverikov
    • 1
    • 2
  • W. Ebeling
    • 1
    • 3
  • M. G. Velarde
    • 1
    Email author
  1. 1.Instituto Pluridisciplinar, Universidad ComplutenseMadridSpain
  2. 2.Deptment of Physics, Saratov State UniversitySaratovRussia
  3. 3.Institut für Physik, Humboldt-Universität BerlinBerlinGermany

Personalised recommendations