Discrete breathers in alpha-uranium

  • Ramil T. Murzaev
  • Rita I. Babicheva
  • Kun Zhou
  • Elena A. Korznikova
  • Sergey Yu. Fomin
  • Vladimir I. Dubinko
  • Sergey V. Dmitriev
Regular Article

Abstract

Uranium is an important radioactive material used in the field of nuclear energy and it is interesting from the scientific point of view because it possesses unique structure and properties. There exist several experimental reports on anomalies of physical properties of uranium that have not been yet explained. Manley et al. [Phys. Rev. Lett. 96, 125501 (2006); Phys. Rev. B 77, 214305 (2008)] speculate that the excitation of discrete breathers (DBs) could be the reason for anisotropy of thermal expansion and for the deviation of heat capacity from the theoretical prediction in the high temperature range. In the present work, with the use of molecular dynamics, the existence of DBs in α-uranium is demonstrated and their properties are studied. It is found that DB frequency lies above the phonon band and increases with DB amplitude. DB is localized on half a dozen of atoms belonging to a straight atomic chain. DB in uranium, unlike DBs in fcc, bcc and hcp metals, is almost immobile. Thus, the DB reported in this study cannot contribute to thermal conductivity and the search for other types of DBs in α-uranium should be continued. Our results demonstrate that even metals with low-symmetry crystal lattices such as the orthorhombic lattice of α-uranium can support DBs.

Keywords

Solid State and Materials 

References

  1. 1.
    A.S. Dolgov, Sov. Phys. Solid State 28, 907 (1986)Google Scholar
  2. 2.
    A. Sievers, S. Takeno, Phys. Rev. Lett. 61, 970 (1988)ADSCrossRefGoogle Scholar
  3. 3.
    S. Flach, A.V. Gorbach, Phys. Rep. 467, 1 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    M.E. Manley, Acta Mater. 58, 2926 (2010)CrossRefGoogle Scholar
  5. 5.
    S.A. Kiselev, A.J. Sievers, Phys. Rev. B 55, 5755 (1997)ADSCrossRefGoogle Scholar
  6. 6.
    L.Z. Khadeeva, S.V. Dmitriev, Phys. Rev. B 81, 214306 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    A.A. Kistanov, Yu.A. Baimova, S.V. Dmitriev, Tech. Phys. Lett. 38, 676 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    A.A. Kistanov, S.V. Dmitriev, Lett. Mater. 2, 143 (2012)Google Scholar
  9. 9.
    N.K. Voulgarakis, G. Hadjisavvas, P.C. Kelires, G.P. Tsironis, Phys. Rev. 69, 113201 (2004)CrossRefGoogle Scholar
  10. 10.
    V. Hizhnyakov, M. Haas, A. Pishtshev, A. Shelkan, M. Klopov, Phys. Scr. 89, 044003 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    M. Haas, V. Hizhnyakov, A. Shelkan, M. Klopov, A.J. Sievers, Phys. Rev. B 84, 144303 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    R.T. Murzaev, A.A. Kistanov, V.I. Dubinko, D.A. Terentyev, S.V. Dmitriev. Comp. Mater. Sci. 98, 88 (2015)CrossRefGoogle Scholar
  13. 13.
    V.I. Dubinko, Lett. Mater. 4, 283 (2014)Google Scholar
  14. 14.
    P.V. Zakharov, M.D. Starostenkov, S.V. Dmitriev, N.N. Medvedev, A.M. Eremin, J. Exp. Theor. Phys. 121, 217 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    N.N. Medvedev, M.D. Starostenkov, M.E. Manley, J. Appl. Phys. 114, 213506 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    N.N. Medvedev, M.D. Starostenkov, A.I. Potekaev, A.V. Markidonov, A.M. Eremin. Russ. Phys. J. 57, 387 (2014)CrossRefGoogle Scholar
  17. 17.
    N.N. Medvedev, M.D. Starostenkov, P.V. Zakharov, O.V. Pozidaeva, Tech. Phys. Lett. 37, 98 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    S. Dmitriev, N. Medvedev, R. Mulyukov, O. Pozhidaeva, A. Potekaev, M. Starostenkov, Russ. Phys. J. 51, 858 (2008)CrossRefGoogle Scholar
  19. 19.
    A.V. Savin, Y.S. Kivshar, Phys. Rev. B 85, 125427 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    A.V. Savin, Yu.S. Kivshar, Appl. Phys. Lett. 94, 111903 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    E.A. Korznikova, J.A. Baimova, S.V. Dmitriev, Europhys. Lett. 102, 60004 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    E.A. Korznikova, A.V. Savin, Yu.A. Baimova, S.V. Dmitriev, R.R. Mulyukov. J. Exp. Theor. Phys. Lett. 96, 222 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    J.A. Baimova, S.V. Dmitriev, K. Zhou, Europhys. Lett. 100, 36005 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    L.Z. Khadeeva, S.V. Dmitriev, Yu.S. Kivshar, J. Exp. Theor. Phys. Lett. 94, 539 (2011)CrossRefGoogle Scholar
  25. 25.
    B. Liu, J.A. Baimova, S.V. Dmitriev, X. Wang, H. Zhu, K. Zhou, J. Phys. D 46, 305302 (2013)CrossRefGoogle Scholar
  26. 26.
    V. Hizhnyakov, M. Klopov, A. Shelkan, Phys. Lett. A 380, 1075 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    A. Frailea, E.N. Koukaras, K. Papagelis, N. Lazarides, G.P. Tsironis, Chaos Solitons Fractals 87, 262 (2016)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    A.A. Kistanov, E.A. Korznikova, S.Yu. Fomin, K. Zhou, S.V. Dmitriev, Lett. Mater. 4, 315 (2014)Google Scholar
  29. 29.
    A.A. Kistanov, S.V. Dmitriev, A.S. Semenov, V.I. Dubinko, D.A. Terent’ev. Tech. Phys. Lett. 40, 657 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    L.Z. Khadeeva, S.V. Dmitriev, Phys. Rev. B 84, 144304 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    A.A. Kistanov, S.V. Dmitriev, A.P. Chetverikov, M.G. Velarde, Eur. Phys. J. B 87, 211 (2014)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    A.A. Kistanov, A.S. Semenov, S.V. Dmitriev, J. Exp. Theor. Phys. 119, 766 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    E.A. Korznikova, S.Yu. Fomin, E.G. Soboleva, S.V. Dmitriev, J. Exp. Theor. Phys. Lett. 103, 303 (2016)CrossRefGoogle Scholar
  34. 34.
    G.M. Chechin, S.V. Dmitriev, I.P. Lobzenko, D.S. Ryabov, Phys. Rev. B 90, 045432 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    I.P. Lobzenko, G.M. Chechin, G.S. Bezuglova, Yu.A. Baimova, E.A. Korznikova, S.V. Dmitriev, Phys. Solid State 58, 633 (2016)ADSCrossRefGoogle Scholar
  36. 36.
    S.V. Dmitriev, E.A. Korznikova, J.A. Baimova, M.G. Velarde, Phys. Usp. 59 (2016), DOI:10.3367/UFNe.2016. 02.037729Google Scholar
  37. 37.
    J.F.R. Archilla, S.M.M. Coelho, F.D. Auret, V.I. Dubinko, V. Hizhnyakov, Physica D 297, 56 (2015)ADSCrossRefGoogle Scholar
  38. 38.
    M.G. Velarde, J. Comput. Appl. Math. 233, 1432 (2010)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    L. Brizhik, A.P. Chetverikov, W. Ebeling, G. Ropke, M.G. Velarde, Phys. Rev. B 85, 245105 (2012)ADSCrossRefGoogle Scholar
  40. 40.
    A.P. Chetverikov, W. Ebeling, M.G. Velarde, Physica D 240, 1954 (2011)ADSCrossRefGoogle Scholar
  41. 41.
    M.G. Velarde, A.P. Chetverikov, W. Ebeling, E.G. Wilson, K.J. Donovan, Europhys. Lett. 106, 27004 (2014)ADSCrossRefGoogle Scholar
  42. 42.
    J.F.R. Archilla, J. Cuevas, M.D. Alba, M. Naranjo, J.M. Trillo, J. Phys. Chem. B 110, 24112 (2006)CrossRefGoogle Scholar
  43. 43.
    V.I. Dubinko, P.A. Selyshchev, J.F.R. Archilla, Phys. Rev. E 83, 041124 (2011)ADSCrossRefGoogle Scholar
  44. 44.
    V. Dubinko, J. Micromech. Mol. Phys. 1, 1650006 (2016)CrossRefGoogle Scholar
  45. 45.
    V.I. Dubinko, F. Piazza, Lett. Mater. 4, 273 (2014)Google Scholar
  46. 46.
    V.I. Dubinko, Lett. Mater. 4, 283 (2014)Google Scholar
  47. 47.
    V.I. Dubinko, A.V. Dubinko, S.V. Dmitriev, Lett. Mater. 3, 239 (2013) (in Russian)Google Scholar
  48. 48.
    V.I. Dubinko, A.N. Dovbnya, V.A. Kushnir, I.V. Khodak, V.P. Lebedev, V.S. Krylovskiy, S.V. Lebedev, V.F. Klepikov, P.N. Ostapchuk, Phys. Solid State 54, 2442 (2012)ADSCrossRefGoogle Scholar
  49. 49.
    V.V. Stolyarov, Lett. Mater. 3, 137 (2013)Google Scholar
  50. 50.
    D. Xiong, J. Wang, Y. Zhang, H. Zhao, Phys. Rev. E 85, 020102(R) (2012)ADSCrossRefGoogle Scholar
  51. 51.
    D. Xiong, Y. Zhang, H. Zhao, Phys. Rev. E 88, 052128 (2013)ADSCrossRefGoogle Scholar
  52. 52.
    D. Xiong, Y. Zhang, H. Zhao, Phys. Rev. E 90, 022117 (2014)ADSCrossRefGoogle Scholar
  53. 53.
    A.R. Bishop, A. Bussmann-Holder, S. Kamba, M. Maglione, Phys. Rev. B 81, 064106 (2010)ADSCrossRefGoogle Scholar
  54. 54.
    J. Macutkevic, J. Banys, A. Bussmann-Holder, A.R. Bishop, Phys. Rev. B 83, 184301 (2011)ADSCrossRefGoogle Scholar
  55. 55.
    V. Dubinko, J. Micromech. Mol. Phys. 1, 1650006 (2016)CrossRefGoogle Scholar
  56. 56.
    M.E. Manley, A.J. Sievers, J.W. Lynn, S.A. Kiselev, N.I. Agladze, Y. Chen, A. Llobet, A. Alatas, Phys. Rev. B 79, 134304 (2009)ADSCrossRefGoogle Scholar
  57. 57.
    M.E. Manley, M. Yethiraj, H. Sinn, H.M. Volz, A. Alatas, J.C. Lashley, W.L. Hults, G.H. Lander, J.L. Smith, Phys. Rev. Lett. 96, 125501 (2006)ADSCrossRefGoogle Scholar
  58. 58.
    M.E. Manley, B. Fultz, R.J. McQueeney, C.M. Brown, W.L. Hults, J.L. Smith, D.J. Thoma, R. Osborn, J.L. Robertson, Phys. Rev. Lett. 86, 3076 (2001)ADSCrossRefGoogle Scholar
  59. 59.
    M.E. Manley, G.H. Lander, H. Sinn, A. Alatas, W.L. Hults, R.J. McQueeney, J.L. Smith, J. Willit, Phys. Rev. B 67, 052302 (2003)ADSCrossRefGoogle Scholar
  60. 60.
    A.J. Sievers, M. Sato, J.B. Page, T. Rössler, Phys. Rev. B 88, 104305 (2013)ADSCrossRefGoogle Scholar
  61. 61.
    S.V. Dmitriev, A.P. Chetverikov, M.G. Velarde, Phys. Stat. Sol. B 252, 1682 (2015)ADSCrossRefGoogle Scholar
  62. 62.
    S. Plimpton, J. Comput. Phys. 117, 1 (1995)ADSCrossRefGoogle Scholar
  63. 63.
    D.E. Smirnova, S.V. Starikov, V.V. Stegailov, Phys. Met. Metallogr. 113, 107 (2012)ADSCrossRefGoogle Scholar
  64. 64.
    Y. Li, T.R. Shan, T. Liang, S.B. Sinnott, S.R. Phillpot, J. Phys.: Condens. Matter 24, 235403 (2012)ADSGoogle Scholar
  65. 65.
    A.A. Kistanov, R.T. Murzaev, S.V. Dmitriev, V.I. Dubinko, V.V. Khizhnyakov, J. Exp. Theor. Phys. Lett. 99, 353 (2014)CrossRefGoogle Scholar
  66. 66.
    W.P. Crummett, H.G. Smith, R.M. Nicklow, N. Wakabayashi, Phys. Rev. B 19, 6028 (1979)ADSCrossRefGoogle Scholar
  67. 67.
    J. Bouchet, F. Bottin, Phys. Rev. B 92, 174108 (2015)ADSCrossRefGoogle Scholar
  68. 68.
    J. Bouchet, Phys. Rev. B 77, 024113 (2008)ADSCrossRefGoogle Scholar
  69. 69.
    M.E. Manley, A. Alatas, F. Trouw, B.M. Leu, J.W. Lynn, Y. Chen, W.L. Hults, Phys. Rev. B 77, 214305 (2008)ADSCrossRefGoogle Scholar
  70. 70.
    E.A. Korznikova, S. Yu. Fomin, E.G. Soboleva, S.V. Dmitriev, J. Exp. Theor. Phys. Lett. 103, 277 (2016)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Ramil T. Murzaev
    • 1
  • Rita I. Babicheva
    • 2
  • Kun Zhou
    • 2
  • Elena A. Korznikova
    • 1
  • Sergey Yu. Fomin
    • 3
  • Vladimir I. Dubinko
    • 4
  • Sergey V. Dmitriev
    • 1
    • 5
  1. 1.Institute for Metals Superplasticity Problems, Russian Academy of SciencesUfaRussia
  2. 2.School of Mechanical and Aerospace Engineering, Nanyang Technological UniversitySingaporeSingapore
  3. 3.Ufa State Aviation Technical UniversityUfaRussia
  4. 4.NSC Kharkov Institute of Physics and TechnologyKharkovUkraine
  5. 5.Research Laboratory for Mechanics of New Nanomaterials, Peter the Great St.Petersburg Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations