Advertisement

Alternating-spin S = 3/2 and σ = 1/2 Heisenberg chain with isotropic three-body exchange interactions

  • Nedko B. Ivanov
  • Svetozara I. Petrova
  • Jürgen SchnackEmail author
Regular Article

Abstract

The promotion of collinear classical spin configurations as well as the enhanced tendency towards nearest-neighbor clustering of the quantum spins are typical features of the frustrating isotropic three-body exchange interactions in Heisenberg spin systems. Based on numerical density-matrix renormalization group calculations, we demonstrate that these extra interactions in the Heisenberg chain constructed from alternating S = 3/2 and σ = 1/2 site spins can generate numerous specific quantum spin states, including some partially-polarized ferrimagnetic states as well as a doubly-degenerate non-magnetic gapped phase. In the non-magnetic region of the phase diagram, the model describes a crossover between the spin-1 and spin-2 Haldane-type states.

Keywords

Solid State and Materials 

References

  1. 1.
    F. Michaud, F. Vernay, S.R. Manmana, F. Mila, Phys. Rev. Lett. 108, 127202 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    Introduction to Frustrated Magnetism: Materials, Experiments, Theory, edited by C. Lacroix, P. Mendels, F. Mila, Springer Series in Solid-State Sciences (2011), Vol. 164Google Scholar
  3. 3.
    A. Furrer, Int. J. Mod. Phys. B 24, 3653 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    A. Furrer, O. Waldmann, Rev. Mod. Phys. 85, 367 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    U. Falk, A. Furrer, J.K. Kjems, H.U. Güdel, Phys. Rev. Lett. 52, 1336 (1984)ADSCrossRefGoogle Scholar
  6. 6.
    F. Michaud, S.R. Manmana, F. Mila, Phys. Rev. B 87, 140404(R) (2013)ADSCrossRefGoogle Scholar
  7. 7.
    N.B. Ivanov, J. Ummethum, J. Schnack, Eur. Phys. J. B 87, 226 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    N.B. Ivanov, J. Schnack, J. Phys.: Conf. Ser. 558, 012015 (2014)ADSGoogle Scholar
  9. 9.
    Z.-Y. Wang, S.C. Furuya, M. Nakamura, R. Komakura, Phys. Rev. B 88, 224419 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    R. Thomale, S. Rachel, P. Schmitteckert, M. Greiter, Phys. Rev. B 85, 195149 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    F. Michaud, F. Mila, Phys. Rev. B 88, 094435 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    N.B. Ivanov, Condens. Matter Phys. 12, 435 (2009)CrossRefGoogle Scholar
  13. 13.
    S.R. White, Phys. Rev. Lett. 69, 2863 (1992)ADSCrossRefGoogle Scholar
  14. 14.
    J. Ummethum, Calculation of static and dynamical properties of giant magnetic molecules using DMRG, Ph.D. thesis, Bielefeld University, 2012Google Scholar
  15. 15.
    J. Ummethum, J. Nehrkorn, S. Mukherjee, N.B. Ivanov, S. Stuiber, Th. Strässle, P.L.W. Tregenna-Piggott, H. Mutka, G. Christou, O. Waldmann, J. Schnack, Phys. Rev. B 86, 104403 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    N.B. Ivanov, J. Richter, Phys. Rev. B 69, 214420 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    T. Shimokawa, H. Nakano, J. Kor. Phys. Soc. (SI) 63, 591 (2013) and references thereinADSCrossRefGoogle Scholar
  18. 18.
    Sh.S. Furuya, Th. Giamarchi, Phys. Rev. B 89, 205131 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    M. Oshikawa, M. Yamanaka, I. Affleck, Phys. Rev. Lett. 78, 1984 (1997)ADSCrossRefGoogle Scholar
  20. 20.
    T. Kennedy, J. Phys.: Condens. Matter 2, 5737 (1990)ADSGoogle Scholar
  21. 21.
    S. Todo, K. Kato, Phys. Rev. Lett. 87, 047203 (2001)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Nedko B. Ivanov
    • 1
    • 2
  • Svetozara I. Petrova
    • 3
  • Jürgen Schnack
    • 1
    Email author
  1. 1.Department of PhysicsBielefeld UniversityBielefeldGermany
  2. 2.Institute of Solid State Physics, Bulgarian Academy of SciencesSofiaBulgaria
  3. 3.Department of Engineering Sciences and MathematicsUniversity of Applied SciencesBielefeldGermany

Personalised recommendations