Advertisement

Effect of network topology on the evolutionary ultimatum game based on the net-profit decision

  • Shun-Qiang Ye
  • Lu Wang
  • Michael C. Jones
  • Ye Ye
  • Meng Wang
  • Neng-Gang XieEmail author
Regular Article

Abstract

The ubiquity of altruist behavior amongst humans has long been a significant puzzle in the social sciences. Ultimatum game has proved to be a useful tool for explaining altruistic behavior among selfish individuals. In an ultimatum game where alternating roles exist, we suppose that players make their decisions based on the net profit of their own. In this paper, we specify a player’s strategy with two parameters: offer level α ∈ [ 0,1) and net profit acceptance level β ∈ [ − 1,1). By Monte Carlo simulation, we analyze separately the effect of the size of the neighborhood, the small-world property and the heterogeneity of the degree distributions of the networks. Results show that compared with results observed for homogeneous networks, heterogeneous networks lead to more rational outcomes. Moreover, network structure has no effect on the evolution of kindness level, so moderate kindness is adaptable to any social groups and organizations.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    W. Güth, R. Schmittberger, B. Schwarze, J. Econ. Behav. Org. 3, 367 (1982)CrossRefGoogle Scholar
  2. 2.
    A.E. Roth, V. Prasnikar, M. Okuno-Fujiwara, S. Zamir, Am. Econ. Rev. 81, 1068 (1991)Google Scholar
  3. 3.
    G.E. Bolton, P. Zwick, Games Econ. Behav. 10, 95 (1995)MathSciNetCrossRefGoogle Scholar
  4. 4.
    C.C. Eckel, P.J. Grossman, Econ. Inq. 39, 171 (2001)CrossRefGoogle Scholar
  5. 5.
    K.M. Page, M.A. Nowak, Bull. Math. Biol. 64, 1101 (2002)CrossRefGoogle Scholar
  6. 6.
    C.F. Camerer, Behavioral Game Theory: Experiments in Strategic Interaction (Princeton University Press, Princeton, 2003)Google Scholar
  7. 7.
    J. Henrich et al., Foundations of Human Sociality: Economic Experiments and Ethnographic Evidence from Fifteen Small-Scale Societies (Oxford University Press, Oxford, 2004)Google Scholar
  8. 8.
    A. Rubinstein, Ecomometrica 50, 97 (1982)CrossRefGoogle Scholar
  9. 9.
    G.E. Bolton, A. Ockenfels, Am. Econ. Rev. 90, 166 (2000)CrossRefGoogle Scholar
  10. 10.
    G. Ichinose, H. Sayama, Sci. Rep. 4, 5104 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    Z. Li, J. Gao, I.H. Suh, L. Wang, Physica A 392, 1885 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    T. Wu, F. Fu, Y.L. Zhang, L. Wang, Sci. Rep. 3, 1550 (2013)ADSGoogle Scholar
  13. 13.
    J. Iranzo, J. Román, A. Sánchez, J. Theor. Biol. 278, 1 (2011)CrossRefGoogle Scholar
  14. 14.
    A. Sánchez, J. Cuesta, J. Theor. Biol. 235, 233 (2005)CrossRefGoogle Scholar
  15. 15.
    X. Li, L. Cao, Phys. Rev. E 80, 066101 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    E. Fehr, S. Gähter, Nature 415, 137 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    A. Szolnoki, M. Perc, G. Szabó, Phys. Rev. Lett. 109, 078701 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    K.M. Page, M.A. Nowak, K. Sigmund, Proc. R. Soc. London B 267, 2177 (2000)CrossRefGoogle Scholar
  19. 19.
    R. Sinatra et al., J. Stat. Mech. Theor. Exp. 09, P09012 (2009)Google Scholar
  20. 20.
    M.N. Kuperman, S. Risau-Gusman, Eur. Phys. J. B 62, 233 (2008)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    X.Y. Bo, J.M. Yang, Physica A 389, 1115 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    L.L. Deng, C. Wang, W.S. Tang, G.G. Zhou, J.H. Cai, J. Stat. Mech. Theor. Exp. 12, P11013 (2012)CrossRefGoogle Scholar
  23. 23.
    J. Gao, Z. Li, T. Wu, L. Wang, Europhys. Lett. 93, 48002 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    L.L. Deng, W.S. Tang, J.X. Zhang, Physica A 390, 4227 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    L.L. Deng, W.S. Tang, J.X. Zhang, Chin. Phys. Lett. 28, 080204 (2011)Google Scholar
  26. 26.
    K. Miyaji, Z. Wang, J. Tanimoto, A. Hagishima, S. Kokubo, Chaos Solitons Fractals 56, 13 (2013)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Z.H. Yang, Z. Li, T. Wu, L. Wang, Europhys. Lett. 109, 40013 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    L. Wang et al., Physica A 430, 32 (2015)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    A. Szolnoki, M. Perc, G. Szabó, Europhys. Lett. 100, 28005 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    G. Szabó, C. Töke, Phys. Rev. E 58, 69 (1998)ADSCrossRefGoogle Scholar
  31. 31.
    A. Traulsen, M.A. Nowak, J.M. Pacheco, Phys. Rev. E 74, 011909 (2006)ADSCrossRefGoogle Scholar
  32. 32.
    C.P. Roca, J.A. Cuesta, A. Sanchez, Phys. Life Rev. 6, 208 (2009).ADSCrossRefGoogle Scholar
  33. 33.
    M.E.J. Newman, SIAM Rev. 45, 167 (2003)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998)ADSCrossRefGoogle Scholar
  35. 35.
    S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.U. Huang, Phys. Rep. 424, 175 (2006)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    G. Szabó, A. Szolnoki, R. Izsak, J. Phys. Math. Gen. 37, 2599 (2004)ADSCrossRefGoogle Scholar
  37. 37.
    J. Gómez-Gardeñes, Y. Moreno, Phys. Rev. E 73, 056124 (2006)ADSCrossRefGoogle Scholar
  38. 38.
    K.M. Page, M.A. Nowak, J. Theor. Biol. 209, 173 (2000)CrossRefGoogle Scholar
  39. 39.
    B. Wu et al., PLoS One 5, e11187 (2010)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Shun-Qiang Ye
    • 1
  • Lu Wang
    • 2
  • Michael C. Jones
    • 3
  • Ye Ye
    • 2
  • Meng Wang
    • 2
  • Neng-Gang Xie
    • 2
    Email author
  1. 1.Institute of Systems Engineering, College of Management and Economics, Tianjin UniversityTianjinP.R. China
  2. 2.School of Mechanical Engineering, Anhui University of TechnologyAnhuiP.R. China
  3. 3.ColumbiaUSA

Personalised recommendations