Advertisement

A simulation study of microwave field effects on a 3D orthorhombic lattice of rotating dipoles: short-range potential energy variation

  • Sergey V. Kapranov
  • Guennadi A. KouzaevEmail author
Regular Article

Abstract

Variation of the short-range potential energy of interaction of nearest dipoles in a three-dimensional (3D) orthorhombic lattice exposed to microwave electric fields is studied by means of the Langevin dynamics simulations. The global increase of the mean potential energy is typical for all the frequencies and intensities at lower temperatures, whereas separate potential energy peaks or peak chains are observed at intermediate temperatures. A simple statistical model proposed to account for the temperature dependence of the field intensity for potential energy peaks suggests the concerted collective rotation of the dipoles. The temperature dependence of the peak frequency is explained using a combination of the one-dimensional Kramers and the resonant activation theories applied to the field-driven collective rotation, with the nearly degenerate angular coordinates of the dipoles being used as a single effective coordinate.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    C. Joachim, J.K. Gimzewski, A. Aviram, Nature 408, 541 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    K.S. Kwok, J.C. Ellenbogen, Mater. Today 5, 28 (2002)CrossRefGoogle Scholar
  3. 3.
    J.R. Heath, Annu. Rev. Mater. Res. 39, 1 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    A. Nitzan, M.A. Ratner, Science 300, 1384 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    S.J. Tans, M.H. Devoret, H. Dai, A. Thess, R.E. Smalley, L.J. Geerligs, C. Dekker, Nature 386, 474 (1997)ADSCrossRefGoogle Scholar
  6. 6.
    H. Xu, Nat. Mater. 4, 649 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    R.W. Wagner, J.S. Lindsey, J. Am. Chem. Soc. 116, 9759 (1994)CrossRefGoogle Scholar
  8. 8.
    A. Bachtold, P. Hadley, T. Nakanishi, C. Dekker, Science 294, 1317 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    P.R. Bandaru, C. Daraio, S. Jin, A.M. Rao, Nat. Mater. 4, 663 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    R. Fan, M. Yue, R. Karnik, A. Majumdar, P. Yang, Phys. Rev. Lett. 95, 086607 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    Y. Tu, R. Zhou, H. Fang, Nanoscale 2, 1976 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    J. Li, X. Gong, H. Lu, D. Li, H. Fang, R. Zhou, Proc. Natl. Acad. Sci. USA 104, 3687 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai, Science 287, 622 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    Y. Cui, Q. Wei, H. Park, C.M. Lieber, Science 293, 1289 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    A.S. Tayi, A. Kaeser, M. Matsumoto, T. Aida, S.I. Stupp, Nat. Chem. 7, 281 (2015)CrossRefGoogle Scholar
  16. 16.
    Molecular Machines and Motors, edited by J.-P. Sauvage (Springer, Berlin, 1991)Google Scholar
  17. 17.
    V. Balzani, A. Credi, M. Venturi, Molecular Devices and Machines – A Book into the Nano World (Wiley, Weinheim, 2003)Google Scholar
  18. 18.
    G.S. Kottas, L.I. Clarke, D. Horinek, J. Michl, Chem. Rev. 105, 1281 (2005)CrossRefGoogle Scholar
  19. 19.
    E.R. Kay, D.A. Leigh, F. Zerbetto, Angew. Chem. Int. Ed. 46, 72 (2007)CrossRefGoogle Scholar
  20. 20.
    K. Skopek, M.C. Hershberger, J.A. Gladysz, Coord. Chem. Rev. 251, 1723 (2007)CrossRefGoogle Scholar
  21. 21.
    C.S. Vogelsberg, M.A. Garcia-Garibay, Chem. Soc. Rev. 41, 1892 (2012)CrossRefGoogle Scholar
  22. 22.
    P. Reimann, Phys. Rep. 361, 57 (2002)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    P. Hänggi, F. Marchesoni, Rev. Mod. Phys. 81, 387 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    R.D. Astumian, P. Hänggi, Phys. Today 55, 33 (2002)CrossRefGoogle Scholar
  25. 25.
    P. Reimann, P. Hänggi, Appl. Phys. A 75, 169 (2002)ADSCrossRefGoogle Scholar
  26. 26.
    A. Coskun, M. Banaszak, R.D. Astumian, J.F. Stoddart, B.A. Grzybowski, Chem. Soc. Rev. 41, 19 (2012)CrossRefGoogle Scholar
  27. 27.
    Z. Dominguez, H. Dang, M.J. Strouse, M.A. Garcia-Garibay, J. Am. Chem. Soc. 124, 2398 (2002)CrossRefGoogle Scholar
  28. 28.
    C.E. Godinez, G. Zepeda, M.A. Garcia-Garibay, J. Am. Chem. Soc. 124, 4701 (2002)CrossRefGoogle Scholar
  29. 29.
    Z. Dominguez, H. Dang, M.J. Strouse, M.A. Garcia-Garibay, J. Am. Chem. Soc. 124, 7719 (2002)CrossRefGoogle Scholar
  30. 30.
    Z. Dominguez, T.-A.V. Khuong, H. Dang, C.N. Sanrame, J.E. Nuñez, M.A. Garcia-Garibay, J. Am. Chem. Soc. 125, 8827 (2003)CrossRefGoogle Scholar
  31. 31.
    C.E. Godinez, G. Zepeda, C.J. Mortko, H. Dang, M.A. Garcia-Garibay, J. Org. Chem. 69, 1652 (2004)CrossRefGoogle Scholar
  32. 32.
    M.A. Garcia-Garibay, Proc. Natl. Acad. Sci. USA 102, 10771 (2005)ADSCrossRefGoogle Scholar
  33. 33.
    T.-A.V. Khuong, J.E. Nuñez, C.E. Godinez, M.A. Garcia-Garibay, Acc. Chem. Res. 39, 413 (2006)CrossRefGoogle Scholar
  34. 34.
    S. Horike, R. Matsuda, D. Tanaka, S. Matsubara, M. Mizuno, K. Endo, S. Kitagawa, Angew. Chem. Int. Ed. 45, 7226 (2006)CrossRefGoogle Scholar
  35. 35.
    M.A. Garcia-Garibay, C.E. Godinez, Cryst. Growth Des. 9, 3124 (2009)CrossRefGoogle Scholar
  36. 36.
    A.J. Metta-Magana, D.G. Vargas-Pineda, C.A. Martinez-Perez, M. Lopez-Cardoso, K.H. Pannell, Appl. Organometal. Chem. 24, 872 (2010)CrossRefGoogle Scholar
  37. 37.
    N.S. Khan, J.M. Perez-Aguilar, T. Kaufmann, P.A. Hill, O. Taratula, O.-S. Lee, P.J. Carroll, J.G. Saven, I.J. Dmochowski, J. Org. Chem. 76, 1418 (2011)CrossRefGoogle Scholar
  38. 38.
    R.D. Horansky, L.I. Clarke, J.C. Price, T.-A.V. Khuong, P.D. Jarowski, M.A. Garcia-Garibay, Phys. Rev. B 72, 014302 (2005)ADSCrossRefGoogle Scholar
  39. 39.
    J. Vacek, J. Michl, Proc. Natl. Acad. Sci. USA 98, 5481 (2001)ADSCrossRefGoogle Scholar
  40. 40.
    S. Hou, T. Sagara, D. Xu, T.R. Kelly, E. Ganz, Nanotechnology 14, 566 (2003)ADSCrossRefGoogle Scholar
  41. 41.
    A.V. Akimov, A.B. Kolomeisky, J. Phys. Chem. C 115, 13584 (2011)CrossRefGoogle Scholar
  42. 42.
    A.B. Marahatta, M. Kanno, K. Hoki, W. Setaka, S. Irle, H. Kono, J. Phys. Chem. C 116, 24845 (2012)CrossRefGoogle Scholar
  43. 43.
    D. Horinek, J. Michl, J. Am. Chem. Soc. 125, 11900 (2003)CrossRefGoogle Scholar
  44. 44.
    D. Horinek, J. Michl, Proc. Natl. Acad. Sci. USA 102, 14175 (2005)ADSCrossRefGoogle Scholar
  45. 45.
    X. Zheng, M.E. Mulcahy, D. Horinek, F. Galeotti, T.F. Magnera, J. Michl, J. Am. Chem. Soc. 126, 4540 (2004)CrossRefGoogle Scholar
  46. 46.
    G. Hummer, J.C. Rasaiah, J.P. Noworyta, Nature 414, 188 (2001)ADSCrossRefGoogle Scholar
  47. 47.
    J. Köfinger, G. Hummer, C. Dellago, Proc. Natl. Acad. Sci. USA 105, 13218 (2008)ADSCrossRefGoogle Scholar
  48. 48.
    J. Köfinger, G. Hummer, C. Dellago, Phys. Chem. Chem. Phys. 13, 15403 (2011)CrossRefGoogle Scholar
  49. 49.
    S. Li, B. Schmidt, Phys. Chem. Chem. Phys. 17, 7303 (2015)CrossRefGoogle Scholar
  50. 50.
    J.K. Holt, H.G. Park, Y. Wang, M. Stadermann, A.B. Artyukhin, C.P. Grigoropoulos, A. Noy, O. Bakajin, Science 312, 1034 (2006)ADSCrossRefGoogle Scholar
  51. 51.
    S.H. Li, J.C. Rasaiah, J. Chem. Phys. 139, 124507 (2013)ADSCrossRefGoogle Scholar
  52. 52.
    Y. Nakamura, T. Ohno, Phys. Chem. Chem. Phys. 13, 1064 (2011)CrossRefGoogle Scholar
  53. 53.
    C.H. Ahn, Y. Baek, C. Lee, S.O. Kim, S. Kim, S. Lee, S.-H. Kim, S.S. Bae, J. Park, J. Yoon, J. Ind. Eng. Chem. 18, 1551 (2012)CrossRefGoogle Scholar
  54. 54.
    P. Xiu, Y. Tu, X. Tian, H. Fang, R. Zhou, Nanoscale 4, 652 (2012)ADSCrossRefGoogle Scholar
  55. 55.
    S. Cambré, J. Campo, C. Beirnaert, C. Verlackt, P. Cool, W. Wenseleers, Nat. Nanotechnol. 10, 248 (2015)ADSCrossRefGoogle Scholar
  56. 56.
    S.W. DeLeeuw, D. Solvaeson, M.A. Ratner, J. Michl, J. Phys. Chem. B 102, 3876 (1998)CrossRefGoogle Scholar
  57. 57.
    E. Sim, M.A. Ratner, S.W. de Leeuw, J. Phys. Chem. B 103, 8663 (1999)CrossRefGoogle Scholar
  58. 58.
    J.J. de Jonge, M.A. Ratner, S.W. de Leeuw, R.O. Simonis, J. Phys. Chem. B 108, 2666 (2004)CrossRefGoogle Scholar
  59. 59.
    L. Chotorlishvili, J. Berakdar, J. Phys. B 40, 3757 (2007)ADSCrossRefGoogle Scholar
  60. 60.
    D. Bonart, J.B. Page, Phys. Rev. E 60, R1134 (1999)ADSCrossRefGoogle Scholar
  61. 61.
    S.V. Kapranov, G.A. Kouzaev, in Recent advances in systems engineering and applied mathematics, Selected Papers from the WSEAS Conferences in Istanbul, Turkey, May 27-30, 2008, edited by M. Demiralp et al. (WSEAS Press, 2008), p. 107Google Scholar
  62. 62.
    G.A. Kouzaev, Applications of Advanced Electromagnetics. Components and Systems (Springer, Berlin, 2013)Google Scholar
  63. 63.
    S.V. Kapranov, G.A. Kouzaev, Physica D 252, 1 (2013)ADSMathSciNetCrossRefGoogle Scholar
  64. 64.
    J.J. de Jonge, M.A. Ratner, S.W. de Leeuw, R.O. Simonis, J. Phys. Chem. B 110, 442 (2006)CrossRefGoogle Scholar
  65. 65.
    J.J. de Jonge, M.A. Ratner, S.W. de Leeuw, J. Phys. Chem. C 111, 3770 (2007)CrossRefGoogle Scholar
  66. 66.
    A.V. Dolgikh, D.S. Kosov, Phys. Rev. E 88, 012118 (2013)ADSCrossRefGoogle Scholar
  67. 67.
    V.M. Rozenbaum, V.M. Ogenko, A.A. Chuiko, Sov. Phys. Usp. 34, 883 (1991)ADSCrossRefGoogle Scholar
  68. 68.
    V.M. Rozenbaum, Sov. Phys. J. Exp. Theor. Phys. 72, 1028 (1991)Google Scholar
  69. 69.
    V.M. Rozenbaum, Phys. Rev. B 51, 1290 (1995)ADSCrossRefGoogle Scholar
  70. 70.
    V.M. Rozenbaum, J. Exp. Theor. Phys. Lett. 63, 662 (1996)CrossRefGoogle Scholar
  71. 71.
    V.M. Rozenbaum, Phys. Rev. B 53, 6240 (1996)ADSCrossRefGoogle Scholar
  72. 72.
    L.I. Clarke, D. Horinek, G.S. Kottas, N. Varaksa, T.F. Magnera, T.P. Hinderer, R.D. Horansky, J. Michl, J.C. Price, Nanotechnology 13, 533 (2002)ADSCrossRefGoogle Scholar
  73. 73.
    C.S. Vogelsberg, S. Bracco, M. Beretta, A. Comotti, P. Sozzani, M.A. Garcia-Garibay, J. Phys. Chem. B 116, 1623 (2012)CrossRefGoogle Scholar
  74. 74.
    J.M. Luttinger, L. Tisza, Phys. Rev. 70, 954 (1946)ADSCrossRefGoogle Scholar
  75. 75.
    P.I. Belobrov, R.S. Gekht, V.A. Ignatchenko, Sov. Phys. J. Exp. Theor. Phys. 57, 636 (1983)Google Scholar
  76. 76.
    J.H.P. Colpa, Physica 56, 185 (1971)ADSCrossRefGoogle Scholar
  77. 77.
    C.K. Purvis, P.L. Taylor, Phys. Rev. B 26, 4547 (1982)ADSMathSciNetCrossRefGoogle Scholar
  78. 78.
    P.H.E. Meijer, D.J. O’Keeffe, Phys. Rev. B 1, 3786 (1970)ADSCrossRefGoogle Scholar
  79. 79.
    A.P. Young, in Computer Simulations in Condensed Matter Systems: From Materials to Chemical Biology, edited by M. Ferrario, G. Ciccotti, K. Binder (Springer, Berlin, Heidelberg, 2006), p. 31Google Scholar
  80. 80.
    V. Russier, J. Appl. Phys. 89, 1287 (2001)ADSCrossRefGoogle Scholar
  81. 81.
    A. Hucht, S. Buschmann, P. Entel, Europhys. Lett. 77, 57003 (2007)ADSCrossRefGoogle Scholar
  82. 82.
    B. Groh, S. Dietrich, Phys. Rev. Lett. 79, 749 (1997)ADSCrossRefGoogle Scholar
  83. 83.
    D. Wei, G.N. Patei, Phys. Rev. Lett. 68, 2043 (1992)ADSCrossRefGoogle Scholar
  84. 84.
    D. Wei, G.N. Patei, Phys. Rev. A 46, 7783 (1992)ADSCrossRefGoogle Scholar
  85. 85.
    J.J. Weis, D. Levesque, Phys. Rev. Lett. 71, 2729 (1993)ADSCrossRefGoogle Scholar
  86. 86.
    J.J. Weis, D. Levesque, Phys. Rev. E 48, 3728 (1993)ADSCrossRefGoogle Scholar
  87. 87.
    S.H.L. Klapp, M. Schoen, J. Chem. Phys. 117, 8050 (2002)ADSCrossRefGoogle Scholar
  88. 88.
    S.H.L. Klapp, J. Phys.: Condens. Matter 17, R525 (2005)ADSGoogle Scholar
  89. 89.
    V.V. Murashov, P.J. Camp, G.N. Patey, J. Chem. Phys. 116, 6731 (2002)ADSCrossRefGoogle Scholar
  90. 90.
    R.A. Reddy, C. Zhu, R. Shao, E. Korblova, T. Gong, Y. Shen, E. Garcia, M.A. Glaser, J.E. Maclennan, D.M. Walba, N.A. Clark, Science 332, 72 (2011)ADSCrossRefGoogle Scholar
  91. 91.
    D.P. Shelton, J. Chem. Phys. 123, 084502 (2005)ADSCrossRefGoogle Scholar
  92. 92.
    D.P. Shelton, J. Chem. Phys. 117, 9374 (2002)ADSCrossRefGoogle Scholar
  93. 93.
    D.P. Shelton, Phys. Rev. B 72, 020201 (2005)ADSCrossRefGoogle Scholar
  94. 94.
    M.A. Pounds, P.A. Madden, J. Chem. Phys. 126, 104506 (2007)ADSCrossRefGoogle Scholar
  95. 95.
    V.V. Murashov, G.N. Patey, J. Chem. Phys. 112, 9828 (2000)ADSCrossRefGoogle Scholar
  96. 96.
    Microwaves in Organic Synthesis, edited by A. Loupy, 2nd edn. (Wiley-VCH, Weinheim, 2006)Google Scholar
  97. 97.
    A. de la Hoz, A. Díaz-Ortiz, A. Moreno, J. Microw. Power Electromagn. Energy 41, 45 (2007)Google Scholar
  98. 98.
    C.O. Kappe, B. Pieber, D. Dallinger, Angew. Chem. Int. Ed. 52, 1088 (2013)CrossRefGoogle Scholar
  99. 99.
    G.B. Dudley, R. Richert, A.E. Stiegman, Chem. Sci. 6, 2144 (2015)CrossRefGoogle Scholar
  100. 100.
    N.J. English, J.M.D. MacElroy, J. Chem. Phys. 119, 11806 (2003)ADSCrossRefGoogle Scholar
  101. 101.
    N.J. English, P.G. Kusalik, S.A. Woods, J. Chem. Phys. 136, 094508 (2012)ADSCrossRefGoogle Scholar
  102. 102.
    R. Reale, N.J. English, P. Marracino, M. Liberti, F. Apollonio, Chem. Phys. Lett. 582, 60 (2013)ADSCrossRefGoogle Scholar
  103. 103.
    L.M. Blinov, Sov. Phys. Usp. 18, 658 (1975)ADSCrossRefGoogle Scholar
  104. 104.
    J. Ortiz-Lopez, M.S. Li, F. Luty, Phys. Stat. Sol. B 199, 245 (1997)ADSCrossRefGoogle Scholar
  105. 105.
    C.R. Doering, J.C. Gadoua, Phys. Rev. Lett. 69, 2318 (1992)ADSCrossRefGoogle Scholar
  106. 106.
    U. Zürcher, C.R. Doering, Phys. Rev. E 47, 3862 (1993)ADSCrossRefGoogle Scholar
  107. 107.
    M. Bier, R.D. Astumian, Phys. Rev. Lett. 71, 1649 (1993)ADSCrossRefGoogle Scholar
  108. 108.
    C. Van den Broek, Phys Rev. E 47, 4579 (1993)ADSCrossRefGoogle Scholar
  109. 109.
    J.J. Brey, J. Cassado-Pascual, Phys. Rev. E 50, 116 (1994)ADSCrossRefGoogle Scholar
  110. 110.
    W. Schneller, L. Gunther, D.L. Weaver, Phys. Rev. E 50, 770 (1994)ADSCrossRefGoogle Scholar
  111. 111.
    P. Pechukas, P. Hänggi, Phys. Rev. Lett. 73, 2772 (1994)ADSCrossRefGoogle Scholar
  112. 112.
    H.A. Kramers, Physica 7, 284 (1940)ADSMathSciNetCrossRefGoogle Scholar
  113. 113.
    V.I. Mel’nikov, S.V. Meshkov, J. Chem. Phys. 85, 1018 (1986)ADSCrossRefGoogle Scholar
  114. 114.
    E. Pollak, H. Grabert, P. Hänggi, J. Chem. Phys. 91, 4073 (1989)ADSCrossRefGoogle Scholar
  115. 115.
    P. Hänggi, P. Talkner, M. Borkovec, Rev. Mod. Phys. 62, 251 (1990)ADSCrossRefGoogle Scholar
  116. 116.
    W.T. Coffey, Y.P. Kalmykov, S.V. Titov, W.J. Dowling, Adv. Chem. Phys. 153, 111 (2013)Google Scholar
  117. 117.
    H.-X. Zhou, Q. Rev. Biophys. 43, 219 (2010)CrossRefGoogle Scholar
  118. 118.
    D. Eisenberg, W. Kauzmann, The Structure and Properties of Water (Oxford University Press, Oxford, 2005)Google Scholar
  119. 119.
    F. Reif, Fundamentals of Statistical and Thermal Physics (McGraw-Hill, New York, 1965)Google Scholar
  120. 120.
    P. Reimann, G.J. Schmid, P. Hänggi, Phys. Rev. E 60, R1 (1999)ADSCrossRefGoogle Scholar
  121. 121.
    L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Rev. Mod. Phys. 70, 223 (1998)ADSCrossRefGoogle Scholar
  122. 122.
    A.L. Pankratov, M. Salerno, Phys. Rev. E 61, 1206 (2000)ADSCrossRefGoogle Scholar
  123. 123.
    A.L. Pankratov, M. Salerno, Phys. Lett. A 273, 162 (2000)ADSMathSciNetCrossRefGoogle Scholar
  124. 124.
    J. Higo, M. Sasai, H. Shirai, H. Nakamura, T. Kugimiya, Proc. Natl. Acad. Sci. USA 98, 5961 (2001)ADSCrossRefGoogle Scholar
  125. 125.
    J. Lehmann, P. Reimann, P. Hänggi, Phys. Stat. Sol. B 237, 53 (2003)ADSCrossRefGoogle Scholar
  126. 126.
    M. Boguñá, J.M. Porrà, J. Masoliver, K. Lindenberg, Phys. Rev. E 57, 3990 (1998)ADSCrossRefGoogle Scholar
  127. 127.
    Y. Zolotaryuk, V.N. Ermakov, P.L. Christiansen, J. Phys. A 37, 6043 (2004)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Electronics and TelecommunicationNorwegian University of Science and Technology (NTNU)TrondheimNorway

Personalised recommendations