Advertisement

An efficient coarse-grained approach for the electron transport through large molecular systems under dephasing environment

  • Daijiro Nozaki
  • Raul Bustos-Marún
  • Carlos J. Cattena
  • Gianaurelio Cuniberti
  • Horacio M. Pastawski
Regular Article

Abstract

Dephasing effects in electron transport in molecular systems connected between contacts average out the quantum characteristics of the system, forming a bridge to the classical behavior as the size of the system increases. For the evaluation of the conductance of the molecular systems which have sizes within this boundary domain, it is necessary to include these dephasing effects. These effects can be calculated by using the D’Amato-Pastawski model. However, this method is computationally demanding for large molecular systems since transmission functions for all pairs of atomic orbitals need to be calculated. To overcome this difficulty, we develop an efficient coarse-grained model for the calculation of conductance of molecular junctions including decoherence. By analyzing the relationship between chemical potential and inter-molecular coupling, we find that the chemical potential drops stepwise in the systems with weaker inter-unit coupling. Using this property, an efficient coarse-grained algorithm which can reduce computational costs considerably without losing the accuracy is derived and applied to one-dimensional organic systems as a demonstration. This model can be used for the study of the orientation dependence of conductivity in various phases (amorphous, crystals, and polymers) of large molecular systems such as organic semiconducting materials.

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    Y. Imry, R. Landauer, Rev. Mod. Phys. 71, S306 (1999) CrossRefGoogle Scholar
  2. 2.
    S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1995) Google Scholar
  3. 3.
    J.L. D’Amato, H.M. Pastawski, Phys. Rev. B 41, 7411 (1990) ADSCrossRefGoogle Scholar
  4. 4.
    H.M. Pastawski, L.E.F. Foa Torres, E. Medina, Chem. Phys. 281, 257 (2002) ADSCrossRefGoogle Scholar
  5. 5.
    H.M. Pastawski, E. Medina, Rev. Mex. Fis. 47S1, 1 (2001) Google Scholar
  6. 6.
    R. Golizadeh-Mojarad, S. Datta, Phys. Rev. B 75, 081301 (2007) ADSCrossRefGoogle Scholar
  7. 7.
    J. Qi, N. Edirisinghe, M.G. Rabbani, M.P. Anatram, Phys. Rev. B 87, 085404 (2013) ADSCrossRefGoogle Scholar
  8. 8.
    D. Nozaki, Y. Girard, K. Yoshizawa, J. Phys. Chem. C 112, 17408 (2008) CrossRefGoogle Scholar
  9. 9.
    D. Nozaki, C. Gomes da Rocha, H.M. Pastawski, G. Cuniberti, Phys. Rev. B 85, 155327 (2012) ADSCrossRefGoogle Scholar
  10. 10.
    J. Maassen, F. Zahid, H. Guo, Phys. Rev. B 80, 125423 (2009) ADSCrossRefGoogle Scholar
  11. 11.
    M. Zilly, O. Ujsághy, D.E. Wolf, Eur. Phys. J. B 68, 237 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    M. Zilly, O. Ujsághy, M. Woelki, D.E. Wolf, Phys. Rev. B 85, 075110 (2012) ADSCrossRefGoogle Scholar
  13. 13.
    C.J. Cattena, R.A. Bustos-Marún, H.M. Pastawski, Phys. Rev. B 82, 144201 (2010) ADSCrossRefGoogle Scholar
  14. 14.
    M. Mardaani, H. Rabani, A. Esmaeili, Solid State Commun. 151, 928 (2011) ADSCrossRefGoogle Scholar
  15. 15.
    T. Stegmann, M. Zilly, O. Ujsághy, D.E. Wolf, Eur. Phys. J. B 85, 264 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    M. Žnidarič, M. Horvat, Eur. Phys. J. B 86, 67 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    A.K. Felts, W.T. Pollard, R.A. Friesner, J. Phys. Chem. 99, 2929 (1995) CrossRefGoogle Scholar
  18. 18.
    D. Segal, A. Nitzan, M. Ratner, W.B. Davis, J. Phys. Chem. B 104, 2790 (2000) CrossRefGoogle Scholar
  19. 19.
    N. Sergueev, D. Roubtsov, H. Guo, Phys. Rev. Lett. 95, 146803 (2005) ADSCrossRefGoogle Scholar
  20. 20.
    E.G. Petrov, V. May, P. Hänggi, Chem. Phys. 296, 251 (2004) ADSCrossRefGoogle Scholar
  21. 21.
    E.G. Petrov, V. May, J. Phys. Chem. A 105, 10176 (2001) CrossRefGoogle Scholar
  22. 22.
    X. Li, Y. Yan, Phys. Rev. B 65, 155326 (2001) ADSCrossRefGoogle Scholar
  23. 23.
    X.Y. Yu, H.Y. Zhang, P. Han, X.Q. Li, Y. Yan, J. Chem. Phys. 117, 2180 (2002) ADSCrossRefGoogle Scholar
  24. 24.
    T. Stegmann, O. Ujsághy, D.E. Wolf, Eur. Phys. J. B 87, 30 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    M. Büttiker, Phys. Rev. B 32, 1846 (1985) ADSCrossRefGoogle Scholar
  26. 26.
    M. Büttiker, IBM J. Res. Dev. 32, 317 (1988)CrossRefGoogle Scholar
  27. 27.
    M. Kilgour, D. Segal, J. Chem. Phys. 143, 024111 (2015) ADSCrossRefGoogle Scholar
  28. 28.
    C.J. Cattena, L.J. Fernández-Alcázar, R.A. Bustos-Marún, D. Nozaki, H.M. Pastawski, J. Phys.: Condens. Matter 26, 345304 (2014) Google Scholar
  29. 29.
    E. Rauls, J. Elsner, R. Gutierrez, T. Frauenheim, Solid State Commun. 111, 459 (1999) ADSCrossRefGoogle Scholar
  30. 30.
    T.A. Niehaus, M. Elster, Th. Frauenheim, S. Suhai, J. Mol. Struct. Theochem 541, 185 (2001) CrossRefGoogle Scholar
  31. 31.
    J.E. Anthony, D.L. Eaton, S.R. Parkin, Org. Lett. 4, 15 (2002)CrossRefGoogle Scholar
  32. 32.
    R.C. Haddon, X. Chi, M.E. Itkis, J.E. Anthony, D.L. Eaton, T. Siegrist, C.C. Mattheus, T.T.M. Palstra, J. Phys. Chem. B 106, 8288 (2002) CrossRefGoogle Scholar
  33. 33.
    K.S. Kumar, R.R. Pasula, S. Lim, C.A. Nijhuis, Adv. Mater. 28, 1824 (2016) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Daijiro Nozaki
    • 1
    • 2
    • 3
    • 4
  • Raul Bustos-Marún
    • 5
    • 6
  • Carlos J. Cattena
    • 5
  • Gianaurelio Cuniberti
    • 1
    • 2
    • 3
  • Horacio M. Pastawski
    • 5
  1. 1.Institute for Materials Science and Max Bergmann Center of BiomaterialsDresdenGermany
  2. 2.Dresden Center for Computational Materials Science (DCCMS), TU DresdenDresdenGermany
  3. 3.Center for Advancing Electronics Dresden (cfAED), TU DresdenDresdenGermany
  4. 4.Lehrstuhl für Theoretische Physik, Universität PaderbornPaderbornGermany
  5. 5.Instituto de Física Enrique Gaviola and Facultad de Matemática Astronomía y Física, Universidad Nacional de Córdoba, Ciudad UniversitariaCórdobaArgentina
  6. 6.Faculdad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad UniversitariaCórdobaArgentina

Personalised recommendations