Advertisement

On the numerical study of percolation and epidemic critical properties in networks

  • Claudio CastellanoEmail author
  • Romualdo Pastor-Satorras
Regular Article

Abstract

The static properties of the fundamental model for epidemics of diseases allowing immunity (susceptible-infected-removed model) are known to be derivable by an exact mapping to bond percolation. Yet when performing numerical simulations of these dynamics in a network a number of subtleties must be taken into account in order to correctly estimate the transition point and the associated critical properties. We expose these subtleties and identify the different quantities which play the role of criticality detector in the two dynamics.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    M. Jackson, Social and Economic Networks (Princeton University Press, Princeton, 2010)Google Scholar
  2. 2.
    R. Pastor-Satorras, C. Castellano, P. Van Mieghem, A. Vespignani, Rev. Mod. Phys. 87, 925 (2015)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    R. Pastor-Satorras, A. Vespignani, Phys. Rev. Lett. 86, 3200 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    C. Castellano, R. Pastor-Satorras, Phys. Rev. Lett. 105, 218701 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    O. Diekmann, H. Heesterbeek, T. Britton, Mathematical Tools for Understanding Infectious Disease Dynamics (Princeton University Press, Princeton, USA, 2012)Google Scholar
  6. 6.
    Y. Moreno, R. Pastor-Satorras, A. Vespignani, Eur. Phys. J. B 26, 521 (2002)ADSGoogle Scholar
  7. 7.
    A.L. Lloyd, R.M. May, Science 292, 1316 (2001)CrossRefGoogle Scholar
  8. 8.
    M. Boguñá, R. Pastor-Satorras, A. Vespignani, Epidemic spreading in complex networks with degree correlations, in Statistical Mechanics of Complex Networks, edited by R. Pastor-Satorras, J.M. Rubí, A. Díaz-Guilera (Springer Verlag, Berlin, 2003), Lecture Notes in Physics 625, 127–147Google Scholar
  9. 9.
    S.N. Dorogovtsev, A.V. Goltsev, J.F.F. Mendes, Rev. Mod. Phys. 80, 1275 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    M. Boguñá, C. Castellano, R. Pastor-Satorras, Phys. Rev. E 79, 036110 (2009)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    M.E.J. Newman, Phys. Rev. E 66, 016128 (2002)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    S.N. Dorogovtsev, J.F.F. Mendes, Adv. Phys. 51, 1079 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    C. Lagorio, M. Migueles, L. Braunstein, E. López, P. Macri, Physica A 388, 755 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    P. Colomer-de Simon, M. Boguñá, Phys. Rev. X 4, 041020 (2014)Google Scholar
  15. 15.
    F. Radicchi, Phys. Rev. E 91, 010801 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    P. Shu, W. Wang, M. Tang, Y. Do, Chaos 25, 063104 (2015)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Finite Size Scaling Current Physics-Sources and Comments, edited by J.L. Cardy (North Holland, Amsterdam, 1988), Vol. 2Google Scholar
  18. 18.
    D. Stauffer, A. Aharony, Introduction to Percolation Theory, 2nd edn. (Taylor & Francis, London, 1994)Google Scholar
  19. 19.
    M. Newman, Networks: An Introduction (Oxford University Press, Inc., New York, 2010)Google Scholar
  20. 20.
    D.S. Callaway, M.E. Newman, S.H. Strogatz, D.J. Watts, Phys. Rev. Lett. 85, 5468 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    R. Cohen, D. ben-Avraham, S. Havlin, Phys. Rev. E 66, 036113 (2002)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    F. Radicchi, C. Castellano, Nat. Commun. 6, 10196 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    Z. Wu, C. Lagorio, L.A. Braunstein, R. Cohen, S. Havlin, H.E. Stanley, Phys. Rev. E 75, 066110 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    M. Boguñá, R. Pastor-Satorras, A. Vespignani, Eur. Phys. J. B 38, 205 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    D. Ludwig, Math. Biosci. 23, 33 (1975)MathSciNetCrossRefGoogle Scholar
  26. 26.
    P. Grassberger, Math. Biosci. 63, 157 (1983)CrossRefGoogle Scholar
  27. 27.
    D.R. Cox, Renewal Theory (Methuen, London, 1967)Google Scholar
  28. 28.
    E. Kenah, J. Robins, Phys. Rev. E 76, 036113 (2007)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    J. Marro, R. Dickman, Nonequilibrium phase transitions in lattice models (Cambridge University Press, Cambridge, 1999)Google Scholar
  30. 30.
    S.C. Ferreira, C. Castellano, R. Pastor-Satorras, Phys. Rev. E 86, 041125 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    P. Crépey, F.P. Alvarez, M. Barthélemy, Phys. Rev. E 73, 046131 (2006)ADSCrossRefGoogle Scholar
  32. 32.
    A. Coniglio, D. Stauffer, Lett. Nuovo Cimento 28, 33 (1980)CrossRefGoogle Scholar
  33. 33.
    R. Botet, J. Phys.: Conf. Ser. 297, 012005 (2011)ADSGoogle Scholar
  34. 34.
    K. Binder, Z. Phys. B 43, 119 (1981)ADSCrossRefGoogle Scholar
  35. 35.
    D.P. Landau, K. Binder, A guide to Monte Carlo simulations in statistical physics (Cambridge University Press, Cambridge, 2014)Google Scholar
  36. 36.
    R. Dickman, J. Kamphorst Leal da Silva, Phys. Rev. E 58, 4266 (1998)ADSCrossRefGoogle Scholar
  37. 37.
    M.E. Newman, R.M. Ziff, Phys. Rev. Lett. 85, 4104 (2000)ADSCrossRefGoogle Scholar
  38. 38.
    M. Newman, R. Ziff, Phys. Rev. E 64, 016706 (2001)ADSCrossRefGoogle Scholar
  39. 39.
    M. Catanzaro, M. Boguñá, R. Pastor-Satorras, Phys. Rev. E 71, 027103 (2005)ADSCrossRefGoogle Scholar
  40. 40.
    J.M. Yeomans, Statistical mechanics of phase transitions (Oxford University Press, Oxford, 1992)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Istituto dei Sistemi Complessi (ISC-CNR)RomaItaly
  2. 2.Dipartimento di Fisica, “Sapienza” Università di RomaRomaItaly
  3. 3.Departament de Física, Universitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations