Advertisement

Escape rate of Brownian particles from a metastable potential well under time derivative Ornstein-Uhlenbeck noise

  • Zhan-Wu BaiEmail author
  • Ping Wang
Regular Article
  • 104 Downloads

Abstract

We investigate the escape rate of Brownian particles that move in a cubic metastable potential subjected to an internal time derivative Ornstein-Uhlenbeck noise (DOUN). This noise can induce the ballistic diffusion of force-free Brownian particles. Some new features are found. The escape rate for DOUN shows qualitative different dependence on potential well width compared with OUN which induces normal diffusion. As the potential barrier height decreases, the escape rate of DOUN deviates from Arrhenius law considerably earlier than that of Ornstein-Uhlenbeck noise (OUN). The Brownian particles escape faster under DOUN than that under OUN. A quasi-periodic oscillation occurs in transient state. A solvable case is presented to demonstrate the significant cancellation behavior in the barrier region that governs most of these phenomena. The physical mechanism of the findings can be clarified by the noise features. These characteristics should be common for internal noises that induce superdiffusion, especially the ballistic diffusion.

Keywords

Statistical, Nonlinear Physics 

References

  1. 1.
    H.A. Kramers, Physica 7, 284 (1940)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    P. Hänggi, P. Talkner, M. Borkovec, Rev. Mod. Phys. 62, 251 (1990)ADSCrossRefGoogle Scholar
  3. 3.
    V.I. Melnikov, Phys. Rep. 209, 1 (1991)ADSCrossRefGoogle Scholar
  4. 4.
    R. Benzi, A. Sutera, A. Vulpiani, J. Phys. A 14, L453 (1981)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Rev. Mod. Phys. 70, 223 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    R.N. Mantegna, B. Spagnolo, Phys. Rev. Lett. 76, 563 (1996)ADSCrossRefGoogle Scholar
  7. 7.
    A. Mielke, Phys. Rev. Lett. 84, 818 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    A. Fiasconaro, B. Spagnolo, S. Boccaletti, Phys. Rev. E 72, 061110 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    C.R. Doering, J.C. Gadoua, Phys. Rev. Lett. 69, 2318 (1992)ADSCrossRefGoogle Scholar
  10. 10.
    Y. Xu, X. Wang, H.Q. Zhang, W. Xu, Nonlinear Dyn. 68, 7 (2012)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Y. Xu, R.C. Gu, H.Q. Zhang, W. Xu, J.Q. Duan, Phys. Rev. E 83, 056215 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    Y. Xu, S. Ma, H.Q. Zhang, Nonlinear Dyn. 65, 77 (2011)MathSciNetCrossRefGoogle Scholar
  13. 13.
    P. Hänggi, P. Jung, Adv. Chem. Phys. 89, 239 (1995)ADSGoogle Scholar
  14. 14.
    P. Hänggi, P. Riseborough, Phys. Rev. A 27, 3379 (1983)ADSCrossRefGoogle Scholar
  15. 15.
    P. Hänggi, P. Jung, F. Marchesoni, J. Stat. Phys. 54, 1367 (1989)ADSCrossRefGoogle Scholar
  16. 16.
    I. Goychuk, P. Hänggi, Phys. Rev. Lett. 99, 200601 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    R. Wackerbauer, Phys. Rev. E 59, 2872 (1999)ADSCrossRefGoogle Scholar
  18. 18.
    B. Spagnolo, D. Valenti, A. Fiasconaro, Math. Biosci. Eng. 1, 185 (2004)MathSciNetCrossRefGoogle Scholar
  19. 19.
    E.V. Pankratova, A.V. Polovinkin, E. Mosekilde, Eur. Phys. J. B 45, 391 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    E.V. Pankratova, A.V. Polovinkin, B. Spagnolo, Phys. Lett. A 344, 43 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    P. Hänggi, J. Stat. Phys. 42, 105 (1986)ADSCrossRefGoogle Scholar
  22. 22.
    V.V. Agudov, A.A. Dubkov, B. Spagnolo, Physica A 325, 144 (2003)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    G. Sun, N. Dong, G. Mao, J. Chen, W. Xu, Z. Ji, L. Kang, P. Wu, Y. Yu, D. Xing, Phys. Rev. E 75, 021107 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    J.R. Chaudhuri, S. Chattopadhyay, S.K. Banik, Phys. Rev. E 76, 021125 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    J.R. Chaudhuri, S. Chattopadhyay, S.K. Banik, J. Chem. Phys. 128, 154513 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    M. Kus, K. Wódkiewicz, Phys. Rev. E 47, 4055 (1993)ADSCrossRefGoogle Scholar
  27. 27.
    A. Fiasconaro, D. Valenti, B. Spagnolo, Physica A 325, 136 (2003)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    A. Fiasconaro, B. Spagnolo, Phys. Rev. E 80, 041110 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    D. Valenti, C. Guarcello, B. Spagnolo, Phys. Rev. B 89, 214510 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    D. Valenti, L. Magazzù, P. Caldara, B. Spagnolo, Phys. Rev. B 91, 235412 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    P. Jung, P. Hänggi, F. Marchesoni, Phys. Rev. A 40, 5447 (1989)ADSCrossRefGoogle Scholar
  32. 32.
    M. Kuś, E. Wajnryb, K. Wódkiewicz, Phys. Rev. A 42, 7500 (1990)ADSCrossRefGoogle Scholar
  33. 33.
    A.N. Malakhov, A.L. Pankratov, Physica A 229, 109 (1996)ADSCrossRefGoogle Scholar
  34. 34.
    P. Reimann, Phys. Rev. E 52, 1579 (1995)ADSCrossRefGoogle Scholar
  35. 35.
    G. Caratti, R. Ferrando, R. Spadacini, G.E. Tommei, I. Zelenskaya, Chem. Phys. Lett. 290, 509 (1998)ADSCrossRefGoogle Scholar
  36. 36.
    B.U. Felderhof, Physica A 387, 1767 (2008)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    E. Pollak, H. Grabert, P. Hänggi, J. Chem. Phys. 91, 4073 (1989)ADSCrossRefGoogle Scholar
  38. 38.
    S. Spezia, D. Persano Adorno, N. Pizzolato, B. Spagnolo, Europhys. Lett. 104, 47011 (2013)ADSCrossRefGoogle Scholar
  39. 39.
    P.L. Cao, Phys. Rev. Lett. 73, 2595 (1994)ADSCrossRefGoogle Scholar
  40. 40.
    T. Srokowski, Phys. Rev. E 64, 031102 (2001)ADSCrossRefGoogle Scholar
  41. 41.
    J.D. Bao, Y.L. Song, Q. Ji, Y.Z. Zhuo, Phys. Rev. E 72, 011113 (2005)ADSCrossRefGoogle Scholar
  42. 42.
    Z.W. Bai, J.D. Bao, Y.L. Song, Phys. Rev. E 72, 061105 (2005)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    J.D. Bao, Phys. Rev. E 69, 016124 (2004)ADSCrossRefGoogle Scholar
  44. 44.
    A.O. Caldeira, A.J. Leggett, Physica A 121, 587 (1983)ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    J.D. Bao, Y.Z. Zhuo, F.A. Oliveira, P. Hänggi, Phys. Rev. E 74, 061111 (2006)ADSCrossRefGoogle Scholar
  46. 46.
    A.O. Caldeira, A.J. Leggett, Ann. Phys. 149, 374 (1983)ADSCrossRefGoogle Scholar
  47. 47.
    A.J. Leggett, Phys. Rev. B 30, 1208 (1984)ADSCrossRefGoogle Scholar
  48. 48.
    X.L. Wu, A. Libchaber, Phys. Rev. Lett. 84, 3017 (2000)ADSCrossRefGoogle Scholar
  49. 49.
    G.W. Ford, J.T. Lewis, R.F. O’Connell, Phys. Rev. Lett. 55, 2273 (1985)ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    J.D. Bao, P. Hänggi, Y.Z. Zhuo, Phys. Rev. E 72, 061107 (2005)ADSCrossRefGoogle Scholar
  51. 51.
    P. Siegle, I. Goychuk, P. Hänggi, Phys. Rev. Lett. 105, 100602 (2010)ADSCrossRefGoogle Scholar
  52. 52.
    P. Siegle, I. Goychuk, P. Talkner, P. Hänggi, Phys. Rev. E 81, 011136 (2010)ADSCrossRefGoogle Scholar
  53. 53.
    P. Siegle, I. Goychuk, P. Hänggi, Europhys. Lett. 93, 20002 (2011)ADSCrossRefGoogle Scholar
  54. 54.
    R. Morgado, F.A. Oliverira, G.G. Batrouni, A. Hansen, Phys. Rev. Lett. 89, 100601 (2002)ADSCrossRefGoogle Scholar
  55. 55.
    H. Risken, The Fokker-Planck Equation (Springer, Berlin, 1989)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Mathematics and PhysicsNorth China Electric Power UniversityBaodingP.R. China

Personalised recommendations