Advertisement

A stochastic evolutionary model generating a mixture of exponential distributions

  • Trevor Fenner
  • Mark LeveneEmail author
  • George Loizou
Regular Article

Abstract

Recent interest in human dynamics has stimulated the investigation of the stochastic processes that explain human behaviour in various contexts, such as mobile phone networks and social media. In this paper, we extend the stochastic urn-based model proposed in [T. Fenner, M. Levene, G. Loizou, J. Stat. Mech. 2015, P08015 (2015)] so that it can generate mixture models, in particular, a mixture of exponential distributions. The model is designed to capture the dynamics of survival analysis, traditionally employed in clinical trials, reliability analysis in engineering, and more recently in the analysis of large data sets recording human dynamics. The mixture modelling approach, which is relatively simple and well understood, is very effective in capturing heterogeneity in data. We provide empirical evidence for the validity of the model, using a data set of popular search engine queries collected over a period of 114 months. We show that the survival function of these queries is closely matched by the exponential mixture solution for our model.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    A.-L. Barabási, IEEE Control Syst. Mag. 27, 33 (2007)CrossRefGoogle Scholar
  2. 2.
    A.-L. Barabási, Nature 435, 207 (2005)CrossRefADSGoogle Scholar
  3. 3.
    C.M. Schneider, V. Belik, T. Couronné, M.C. González, J. R. Soc. Interface 10, 20130246 (2013)CrossRefGoogle Scholar
  4. 4.
    A. Mitnitski, X. Song, K. Rockwood, Biogerontology 14, 709 (2013)CrossRefGoogle Scholar
  5. 5.
    S. Galam, J. Mod. Phys. C 19, 409 (2008)CrossRefADSzbMATHGoogle Scholar
  6. 6.
    P. Sen, B.K. Chakrabarti, Sociophysics: An Introduction (Oxford University Press, Oxford, 2014)Google Scholar
  7. 7.
    C. Castellano, S. Fortunato, V. Loreto, Rev. Mod. Phys. 81, 591 (2009)CrossRefADSGoogle Scholar
  8. 8.
    T. Fenner, M. Levene, G. Loizou, J. Stat. Mech. 2015, P08015 (2015)CrossRefMathSciNetGoogle Scholar
  9. 9.
    A. Tatar, M.D. de Amorim, S. Fdida, P. Antoniadis, J. Internet Services Appl. 5, 20 (2014)Google Scholar
  10. 10.
    D.G. Kleinbaum, M. Klein, Survival Analysis, A Self-Learning Text, 3rd edn. Springer Science+Business Media (Springer-Verlag, New York, 2012)Google Scholar
  11. 11.
    J.F. Lawless, Statistical Models and Methods for Lifetime Data, 2nd edn. Wiley Series in Probability and Statistics (John Wiley & Sons, 2003)Google Scholar
  12. 12.
    T.R. Fleming, D.Y. Lin, Biometrics 56, 971 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    L.A. Gavrilov, N.S. Gavrilova, J. Theor. Biol. 213, 527 (2001)CrossRefMathSciNetGoogle Scholar
  14. 14.
    M. Finkelstein, Failure Rate Modelling for Reliability and Risk, Springer Series in Reliability Engineering (Springer-Verlag, London, 2008)Google Scholar
  15. 15.
    P.D.T. O’Connor, A. Kleyner, Practical Reliability Engineering, Wiley Series in Telecommunications, 5th edn. (John Wiley & Sons, Chichester, 2012)Google Scholar
  16. 16.
    J. Mathiesen, L. Angheluta, P.T.H. Ahlgren, M.H. Jensen, in Proceedings of the National Academy of Sciences of the United States of America, 2013, Vol. 110, pp. 17259–17262Google Scholar
  17. 17.
    J. Candia, M.C. González, P. Wang, T. Schoenhar, G. Madey, A.-L. Barabási, J. Phys. A 41, 224015 (2008)CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    T. Fenner, M. Levene, G. Loizou, Social Networks 29, 70 (2007)CrossRefGoogle Scholar
  19. 19.
    T. Fenner, M. Levene, G. Loizou, IEEE Trans. Comput. Intell. AI Games 4, 84 (2012)CrossRefGoogle Scholar
  20. 20.
    H.A. Simon, Biometrika 42, 425 (1955)CrossRefMathSciNetzbMATHGoogle Scholar
  21. 21.
    R. Albert, A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002)CrossRefADSzbMATHGoogle Scholar
  22. 22.
    S. Börner, S. Sanyal, A. Vespignani, Ann. Rev. Inform. Sci. Technol. 41, 537 (2007)CrossRefGoogle Scholar
  23. 23.
    P. Hedström, R. Swedberg, Social mechanisms: An introductory essay, in Social Mechanisms: An Analytical Approach to Social Theory, edited by P. Hedström, R. Swedberg (Cambridge University Press, Cambridge, 1998), pp. 1–31Google Scholar
  24. 24.
    T.C. Schelling, Social mechanisms and social dynamics, in Social Mechanisms: An Analytical Approach to Social Theory, edited by P. Hedström and R. Swedberg (Cambridge University Press, Cambridge, 1998), pp. 32–44Google Scholar
  25. 25.
    A. Tsoularis, J. Wallace, Math. Biosci. 179, 21 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  26. 26.
    T. Fenner, M. Levene, G. Loizou, Central Eur. J. Phys. 11, 904 (2013)ADSGoogle Scholar
  27. 27.
    E. Lovecchio, P. Allegrini, E. Geneston, B.J. West, P. Grigolini, Front. Physiol. 3, 9 (2012)CrossRefGoogle Scholar
  28. 28.
    R.K. Pan, S. Sinha, New J. Phys. 12, 115004 (2010)CrossRefADSGoogle Scholar
  29. 29.
    H. Rinne, The Weibull Distribution: A Handbook (CRC Press, Boca Raton, 2009)Google Scholar
  30. 30.
    G. McLachlan, D. Peel, Finite Mixture Models, 2nd edn. (John Wiley & Sons, New York, 2000)Google Scholar
  31. 31.
    H. Block, H. Joe, Lifetime Data Analysis 3, 269 (1997)CrossRefzbMATHGoogle Scholar
  32. 32.
    M. Finkelstein, Appl. Stoch. Models Bus. Ind. 25, 643 (2009)CrossRefMathSciNetzbMATHGoogle Scholar
  33. 33.
    F. Proschan, Technometrics 5, 375 (1963)CrossRefGoogle Scholar
  34. 34.
    A. Feldman, W. Whitt, Performance Evaluation 31, 245 (1998)CrossRefGoogle Scholar
  35. 35.
    C. Keatinge, in Proceedings of the Casualty Actuarial Society, 1999, Vol. LXXXVI, pp. 654–698Google Scholar
  36. 36.
    A.T. Mendoza-Rosas, S. De la Cruz-Reyna, Nat. Hazards Earth Syst. Sci. 9, 425 (2009)CrossRefADSGoogle Scholar
  37. 37.
    C. Bracquemond, O. Gaudoin, Int. J. Reliab. Qual. Safety Eng. 10, 69 (2003)CrossRefGoogle Scholar
  38. 38.
    N.P. Jewell, Ann. Statist. 10, 479 (1982)CrossRefMathSciNetzbMATHGoogle Scholar
  39. 39.
    W. Feller, in An Introduction to Probability Theory and its Applications, 2nd edn. (John Wiley & Sons, New York, 1971), Vol. IIGoogle Scholar
  40. 40.
    P.O.S. Vaz De Melo, L. Akoglu, C. Faloutsos, A.A.P. Loureiro, in Proceedings of European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), Barcelona, 2010, pp. 354–369.Google Scholar
  41. 41.
    D. Zhang, K. Prior, M. Levene, in Proceedings of the 8th International Symposium on Wikis and Open Collaboration (WikiSym), Linz, Austria, 2012 Google Scholar
  42. 42.
    J.G. Lee, S. Moon, K. Salamatian, Neurocomputing 76, 134 (2012)CrossRefGoogle Scholar
  43. 43.
    E.L. Kaplan, P. Meier, J. Am. Stat. Assoc. 53, 457 (1958)CrossRefMathSciNetzbMATHGoogle Scholar
  44. 44.
    J.T. Rich, J.G. Neely, R.C. Paniello, C.C.J. Voelker, B. Nussenbaum, E.W. Wang, Otolaryngology-Head and Neck Surgery 143, 331 (2010)CrossRefGoogle Scholar
  45. 45.
    H. Motulsky, Intuitive Biostatistics (Oxford University Press, Oxford, 1995)Google Scholar
  46. 46.
    S. Siegel, N.J. Castellan Jr., Nonparametric Statistics for the Behavioral Sciences, 2nd edn. (McGraw-Hill, New York, 1988)Google Scholar
  47. 47.
    T. Jin, L.K. Gonigunta, J. Stat. Comput. Simul. 80, 273 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  48. 48.
    T. Bŭcar, M. Nagode, M. Fajdiga, Reliab. Eng. Syst. Safety 84, 241 (2004)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Computer Science and Information SystemsBirkbeck, University of LondonLondonUK

Personalised recommendations