Advertisement

Pseudogaps in the three-band Hubbard model

  • Alexei ShermanEmail author
Regular Article

Abstract

Using the strong coupling diagram technique, the energy spectrum of the three-band Hubbard model is investigated. In these calculations, the series in powers of the copper-oxygen hybridization for the irreducible part is approximated by two lowest-order terms. For parameters of hole-doped cuprates the calculated energy spectrum consists of lower and upper Hubbard subbands of predominantly copper nature, oxygen bands with some admixture of copper states and the Zhang-Rice states of mixed nature. The spectrum contains two pseudogaps, the lower of which separates the Hubbard subband from Zhang-Rice and oxygen bands. The pseudogaps arise due to multiple reabsorption of carriers in states with double occupancy of sites by holes or electrons.

Keywords

Solid State and Materials 

References

  1. 1.
    V.J. Emery, Phys. Rev. Lett. 58, 2794 (1987)ADSCrossRefGoogle Scholar
  2. 2.
    P. Horsch, W.H. Stephan, K.V. Szczepanski, M. Ziegler, W. von der Linden, Physica C 162-164, 783 (1989)ADSCrossRefGoogle Scholar
  3. 3.
    P. Horsch, Helv. Phys. Acta 63, 345 (1990)Google Scholar
  4. 4.
    A. Macridin, M. Jarrell, T. Maier, G.A. Sawatzky, Phys. Rev. B 71, 134527 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    C. Weber, K. Haule, G. Kotliar, Phys. Rev. B 78, 134519 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    L. de’ Medici, X. Wang, M. Capone, A.J. Millis, Phys. Rev. B 80, 054501 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    X. Wang, L. de’ Medici, A.J. Millis, Phys. Rev. B 83, 094501 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    E. Arrigoni, M. Aichhorn, M. Daghofer, W. Hanke, New J. Phys. 11, 055066 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    S.R. White, D.J. Scalapino, Phys. Rev. B 92, 205112 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    F.C. Zhang, T.M. Rice, Phys. Rev. B 37, 3759 (1988)ADSCrossRefGoogle Scholar
  11. 11.
    M.I. Vladimir, V.A. Moskalenko, Theor. Math. Phys. 82, 301 (1990)CrossRefGoogle Scholar
  12. 12.
    S.I. Vakaru, M.I. Vladimir, V.A. Moskalenko, Theor. Mat. Fiz. 85, 1185 (1990)CrossRefGoogle Scholar
  13. 13.
    V.A. Moskalenko, P. Entel, D.F. Digor, Phys. Rev. B 59, 619 (1999)ADSCrossRefGoogle Scholar
  14. 14.
    W. Metzner, Phys. Rev. B 43, 8549 (1991)ADSCrossRefGoogle Scholar
  15. 15.
    L. Craco, M.A. Gusmão, Phys. Rev. B 52, 17135 (1995)ADSCrossRefGoogle Scholar
  16. 16.
    L. Craco, M.A. Gusmão, Phys. Rev. B 54, 1629 (1996)ADSCrossRefGoogle Scholar
  17. 17.
    L. Craco, J. Phys.: Condens. Matter 13, 263 (2001)ADSGoogle Scholar
  18. 18.
    S. Pairault, D. Sénéchal, A.-M.S. Tremblay, Eur. Phys. J. B 16, 85 (2000)ADSCrossRefGoogle Scholar
  19. 19.
    A. Sherman, Phys. Rev. B 73, 155105 (2006)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    A. Sherman, Phys. Rev. B 74, 035104 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    A. Sherman, Physica B 456, 35 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    A. Sherman, Int. J. Mod. Phys. B 29, 1550088 (2015)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    A. Sherman, Phys. Stat. Sol. B 252, 2006 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    J. Hubbard, Proc. R. Soc. London A 281, 401 (1964)ADSCrossRefGoogle Scholar
  25. 25.
    V. Hizhnyakov, E. Sigmund, M. Schneider, Phys. Rev. B 44, 795 (1991)ADSCrossRefGoogle Scholar
  26. 26.
    Z. Ludmer, L. Zeiri, S. Starobinets, Phys. Rev. Lett. 48, 341 (1982)ADSCrossRefGoogle Scholar
  27. 27.
    A. Sherman, M. Schreiber, Phys. Rev. B 76, 245112 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    A. Sherman, M. Schreiber, Phys. Rev. B 77, 155117 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    J. Hubbard, Proc. R. Soc. London A 276, 238 (1963)ADSCrossRefGoogle Scholar
  30. 30.
    J. Hubbard, Proc. R. Soc. London A 277, 237 (1964)ADSCrossRefGoogle Scholar
  31. 31.
    A. Sherman, M. Schreiber, Phys. Rev. B 55, R712 (1997)ADSCrossRefGoogle Scholar
  32. 32.
    A.A. Abrikosov, L.P. Gor’kov, I.E. Dzyaloshinskii, Methods of Quantum Field Theory in Statistical Physics (Pergamon Press, New York, 1965)Google Scholar
  33. 33.
    R. Kubo, J. Phys. Soc. Jpn 17, 1100 (1962)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute of Physics, University of TartuTartuEstonia

Personalised recommendations