Advertisement

Nuclear quantum effects on the thermal expansion coefficient of hexagonal boron nitride monolayer

  • Florent Calvo
  • Yann Magnin
Regular Article

Abstract

This work examines the importance of vibrational delocalization on a basic thermomechanical property of a hexagonal boron nitride monolayer, namely its thermal expansion coefficient (TEC). Using a recently parametrized bond-order potential of the Tersoff type, the TEC was theoretically obtained from the thermal variations of the lattice parameter a(T) calculated using three different methods: (i) the quasiharmonic approximation; (ii) its anharmonic improvement based on self-consistent phonons; (iii) fully anharmonic Monte Carlo simulations possibly enhanced within the path-integral framework to account for nuclear quantum effects. The results obtained with the three methods are generally consistent with one another and with other recently published data, and indicate that the TEC is negative at least up to ca. 700 K, quantum mechanical effects leading to a significant expansion by about 50% relative to the classical result. Comparison with experimental data on bulk hexagonal BN suggests significant differences, which originate from possible inaccuracies in the model that tend to underestimate the lattice parameter itself, and most likely from the 2D nature of the monolayer and the key contribution of out-of-plane modes. The effects of isotopic purity in the natural abundances of boron are found to be insignificant.

Keywords

Solid State and Materials 

References

  1. 1.
    R.W. Lynch, H.G. Drickamer, J. Chem. Phys. 44, 181 (1996)ADSCrossRefGoogle Scholar
  2. 2.
    J.H. Edgar, in Properties of Group III Nitrides, edited by J.H. Edgar (IEE, London, 1994), p. 7Google Scholar
  3. 3.
    E.K. Sichel, E.R. Miller, M.S. Abrahams, C.J. Buiocchi, Phys. Rev. B 13, 4607 (1976)ADSCrossRefGoogle Scholar
  4. 4.
    K. Watanabe, T. Taniguchi, H. Kanda, Nat. Mater. 3, 404 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Kubota, K. Watanabe, O. Tsuda, T. Taniguchi, Science 317, 932 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    G. Kim, A.R. Jang, H.Y. Jeong, Z. Lee, D.J. Kang, H.S. Shin, Nano Lett. 13, 1834 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    L. Britnell et al., Nano Lett. 12, 1707 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    X. Li, J. Yin, J. Zhou, W. Guo, Nanotechnology 25, 105701 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K.L. Shepard, J. Hone, Nat. Nanotechnol. 5, 722 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    N. Alem, R. Erni, C. Kisielowski, M.D. Rossel, W. Gannett, A. Zettl, Phys. Rev. B 80, 155425 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    K.N. Kudin, G.E. Scuseria, B.I. Yakobson, Phys. Rev. B 64, 235406 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    S.K. Singh, M. Neek-Amal, S. Costamagna, F.M. Peeters, Phys. Rev. B 87, 184106 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    C. Sevik, A. Kinaci, J.B. Haskins, T. Çağın, Phys. Rev. B 84, 085409 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    I. Jo, T. Pettes, K. Kim, T. Watanabe, T. Taniguchi, Z. Yao, L. Shi, Nano Lett. 13, 550 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    M. Hu, Z. Yu, K. Zhang, L. Sun, J. Zhong, J. Phys. Chem. C 115, 8260 (2011)CrossRefGoogle Scholar
  16. 16.
    M. Neek-Amal, J. Beheshtian, A. Sadeghi, K.H. Michel, F.M. Peeters, J. Phys. Chem. C 117, 13261 (2013)CrossRefGoogle Scholar
  17. 17.
    N. Mounet, N. Marzari, Phys. Rev. B 71, 205214 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    M. Pozzo, D. Alfè, P. Lacovig, P. Hofmann, S. Lizzit, A. Baraldi, Phys. Rev. Lett. 106, 135501 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    K.V. Zakharchenko, A. Faoslino, J.H. Los, M.I. Katsnelson, J. Phys.: Condens. Matter 23, 202202 (2011)ADSGoogle Scholar
  20. 20.
    A.L.C. da Silva, L. Candido, J.N.T. Rabelo, G.-Q. Jai, F.M. Peeters, Europhys. Lett. 107, 56004 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    C. Sevik, Phys. Rev. B 89, 035422 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    P. Anees, M.C. Valsakumar, B.K. Panigrahi, Phys. Chem. Chem. Phys. 18, 2672 (2016)CrossRefGoogle Scholar
  23. 23.
    W. Bao, F. Miao, Z. Chen, H. Zhang, W. Jang, C. Dames, C.N. Lau, Nat. Nanotechnol. 4, 562 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    D. Yoon, Y.-W. Son, H. Cheong, Nano Lett. 11, 3227 (2011)CrossRefGoogle Scholar
  25. 25.
    S. Linas, Y. Magnin, B. Poinsot, O. Boisron, G.D. Förster, V. Martinez, R. Fulcrand, F. Tournus, V. Dupuis, F. Rabilloud, L. Bardotti, Z. Han, D. Kalita, V. Bouchiat, F. Calvo, Phys. Rev. B 91, 075426 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    Y. Magnin, G.D. Förster, F. Rabilloud, F. Calvo, A. Zappelli, C. Bichara, J. Phys.: Condens. Matter 26, 185401 (2014)Google Scholar
  27. 27.
    B. Yates, M. Overy, O. Pirgon, Philos. Mag. 32, 847 (1975)ADSCrossRefGoogle Scholar
  28. 28.
    G. Belenkii, E. Salaev, R. Suleimanov, N. Abdullaev, V. Shteinshraiber, Solid State Commun. 53, 967 (1985)ADSCrossRefGoogle Scholar
  29. 29.
    W. Paszkowicz, J.B. Pelka, M. Knapp, T. Szyszko, S. Podsiadlo, Appl. Phys. A 75, 431 (2002)ADSCrossRefGoogle Scholar
  30. 30.
    D.K.L. Tsang, B.J. Marsden, S.L. Fok, G. Hall, Carbon 43, 2902 (2005)CrossRefGoogle Scholar
  31. 31.
    J. Ranninger, Phys. Rev. A 140, 2031 (1965)ADSCrossRefGoogle Scholar
  32. 32.
    T.R. Koehler, Phys. Rev. Lett. 17, 89 (1966)ADSCrossRefGoogle Scholar
  33. 33.
    S.L. Mayo, B.D. Olafson, W.A. Goddard, J. Phys. Chem. 94, 8897 (1990)CrossRefGoogle Scholar
  34. 34.
    A.K. Rappé, C.J. Casewit, K.S. Colwell, W.A. Goddard, W.M. Skiff, J. Am. Chem. Soc. 114, 10024 (1992)CrossRefGoogle Scholar
  35. 35.
    K. Albe, W. Möller, Comput. Mater. Sci. 10, 111 (1998)CrossRefGoogle Scholar
  36. 36.
    M.L. Liao, Y.C. Wang, S.P. Ju, T.W. Lien, L.F. Huang, J. Appl. Phys. 110, 054310 (2011)ADSCrossRefGoogle Scholar
  37. 37.
    D.M. Ceperley, Rev. Mod. Phys. 67, 279 (1995)ADSCrossRefGoogle Scholar
  38. 38.
    J.S. Cao, G.A. Voth, J. Chem. Phys. 102, 3337 (1995)ADSCrossRefGoogle Scholar
  39. 39.
    D.J. Wales, Energy Landscapes (Cambridge University Press, Cambridge, 2003)Google Scholar
  40. 40.
    F. Calvo, P. Parneix, N.-T. Van-Oanh, J. Chem. Phys. 133, 074303 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    I. Errea, M. Calandra, F. Mauri, Phys. Rev. B 89, 064302 (2014)ADSCrossRefGoogle Scholar
  42. 42.
    N.D. Mermin, H. Wagner, Phys. Rev. Lett. 17, 1133 (1966)ADSCrossRefGoogle Scholar
  43. 43.
    A. Fasolino, J.H. Los, M.I. Kastnelson, Nat. Mater. 6, 858 (2007)ADSCrossRefGoogle Scholar
  44. 44.
    W. Gao, R. Huang, J. Mech. Phys. Solids 66, 42 (2014)ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    F. Calvo, J.P.K. Doye, D.J. Wales, J. Chem. Phys. 115, 9627 (2001)ADSCrossRefGoogle Scholar
  46. 46.
    C.W. Wang, A.M. Fennimore, A. Afanasiev, D. Okawa, T. Ikuno, H. Garcia, D. Li, A. Majumdar, A. Zettl, Phys. Rev. Lett. 97, 085901 (2006)ADSCrossRefGoogle Scholar
  47. 47.
    C. Sevik, A. Kinaci, J.B. Haskins, T. Çağın, Phys. Rev. B 86, 075403 (2012)ADSCrossRefGoogle Scholar
  48. 48.
    J. Che, T. Cağın, W.A. Goddard, Theor. Chem. Acc. 102, 346 (1999)CrossRefGoogle Scholar
  49. 49.
    N. Ooi, V. Rajan, J. Gottlieb, Y. Catherine, J.B. Adams, Modell. Simul. Mater. Sci. Eng. 14, 515 (2006)ADSCrossRefGoogle Scholar
  50. 50.
    I. Georgescu, V.A. Mandelshtam, J. Chem. Phys. 137, 144106 (2012)ADSCrossRefGoogle Scholar
  51. 51.
    M. Ceriotti, G. Bussi, M. Parrinello, J. Chem. Theory Comput. 6, 1170 (2010)CrossRefGoogle Scholar
  52. 52.
    A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Phys. Rev. Lett. 97, 187401 (2006)ADSCrossRefGoogle Scholar
  53. 53.
    A.C. Ferrari, D.M. Basko, Nat. Nanotechnol. 8, 235 (2013)ADSCrossRefGoogle Scholar
  54. 54.
    V. Yu, E. Whiteway, J. Maassen, M. Hilke, Phys. Rev. B 84, 205407 (2011)ADSCrossRefGoogle Scholar
  55. 55.
    J.E. Lee, G. Ahn, J. Shim, Y.S. Lee, S. Ryu, Nat. Commun. 3, 1024 (2012)ADSCrossRefGoogle Scholar
  56. 56.
    T.M.G. Mohiuddin, A. Lombardo, R.R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D.M. Basko, C. Galiotis, N. Marzari, K.S. Novoselov, A.K. Geim, A.C. Ferrari, Phys. Rev. B 79, 205433 (2009)ADSCrossRefGoogle Scholar
  57. 57.
    R.V. Gorbachev, I. Riaz, R.R. Nair, R. Jalil, L. Britnell, B.D. Belle, E.W. Hill, K.S. Novoselov, T. Watanabe, T. Taniguchi, A.K. Geim, P. Blake, Small 7, 465 (2011)CrossRefGoogle Scholar
  58. 58.
    B.N. Feigelson, V.M. Bermudez, J.K. Hite, Z.R. Robinson, V.D. Wheeler, K. Sridhara, S.C. Hernández, Nanoscale 7, 3694 (2015)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.LIPhy, Univ. Grenoble 1 and CNRS, UMR 5588HèresFrance
  2. 2.CINaM, CNRS Aix-Marseille UniversityMarseilleFrance

Personalised recommendations