Impact of mobility structure on optimization of small-world networks of mobile agents

  • Eun Lee
  • Petter HolmeEmail author
Regular Article


In ad hoc wireless networking, units are connected to each other rather than to a central, fixed, infrastructure. Constructing and maintaining such networks create several trade-off problems between robustness, communication speed, power consumption, etc., that bridges engineering, computer science and the physics of complex systems. In this work, we address the role of mobility patterns of the agents on the optimal tuning of a small-world type network construction method. By this method, the network is updated periodically and held static between the updates. We investigate the optimal updating times for different scenarios of the movement of agents (modeling, for example, the fat-tailed trip distances, and periodicities, of human travel). We find that these mobility patterns affect the power consumption in non-trivial ways and discuss how these effects can best be handled.


Statistical and Nonlinear Physics 


  1. 1.
    S. Kumar, V.S. Raghavan, J. Deng, Ad Hoc Networks 4, 326 (2006)CrossRefGoogle Scholar
  2. 2.
    C. Thiemann, M. Treiber, A. Kesting, Phys. Rev. E 78, 036102 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    Y. Hayashi, Y. Ono, Phys. Rev. E 82, 016108 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    W. Krause, J. Scholz, M. Greiner, Physica A 361, 707 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    P. Santi, ACM Comput. Surveys 37, 164 (2005)CrossRefGoogle Scholar
  6. 6.
    J. Liu, B. Li, Distributed topology control in wireless sensor networks with asymmetric links, in Global Telecommunications Conference, 2003. GLOBECOM ’03. IEEE (2003), Vol. 3, pp. 1257–1262Google Scholar
  7. 7.
    D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    P. Holme, B.J. Kim, V. Fodor, Eur. Phys. J. B 73, 597 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    T. Camp, J. Boleng, V. Davies, Wirel. Commun. Mob. Com. 2, 483 (2002)CrossRefGoogle Scholar
  10. 10.
    D. Brockmann, L. Hufnagel, T. Geisel, Nature 439, 462 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    J. Park, D.S. Lee, M.C. González, J. Stat. Mech.: Theor. Exp. 2010, P11021 (2010)CrossRefGoogle Scholar
  12. 12.
    M.A. González, C. Hidalgo, A.L. Barabási, Nature 453, 779 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    M.P. Freeman, N.W. Watkins, E. Yoneki, J. Crowcroft, Rhythm and Randomness in Human Contact, in 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014) (IEEE Computer Society, Los Alamitos, 2010), pp. 184–191Google Scholar
  14. 14.
    I. Rhee, M. Shin, S. Hong, K. Lee, S. Chong, Human Mobility Patterns and Their Impact on Routing in Human-Driven Mobile Networks, in Proceedings of the Sixth Workshop on Hot Topics in Networks, 2007 Google Scholar
  15. 15.
    H.H. Jo, M. Karsai, J. Kertész, K. Kaski, New J. Phys. 14, 013055 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    J. Gui, A. Liu, J. Parallel Distrib. Comput. 72, 1032 (2012)CrossRefGoogle Scholar
  17. 17.
    V. Lenders, J. Wagner, M. May, Analyzing the Impact of Mobility in Ad Hoc Networks, in Proceedings of the 2nd International Workshop on Multi-hop Ad Hoc Networks: From Theory to Reality, REALMAN ’06 (ACM, New York, 2006), pp. 39–46Google Scholar
  18. 18.
    V. Vukadinovic, F. Dreier, S. Mangold, Ad Hoc Networks 12, 17 (2014)CrossRefGoogle Scholar
  19. 19.
    H. Zhu, M. Li, Studies on Urban Vehicular Ad-hoc Networks, SpringerBriefs in Computer Science (Springer, New York, 2013)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Energy ScienceSungkyunkwan UniversitySuwonKorea

Personalised recommendations