Advertisement

Electronic structure and correlations of vitamin B12 studied within the Haldane-Anderson impurity model

  • Zafer Kandemir
  • Selma Mayda
  • Nejat BulutEmail author
Regular Article

Abstract

We study the electronic structure and correlations of vitamin B12 (cyanocobalamine) by using the framework of the multi-orbital single-impurity Haldane-Anderson model of a transition-metal impurity in a semiconductor host. The parameters of the effective Haldane-Anderson model are obtained within the Hartree-Fock (HF) approximation. The quantum Monte Carlo (QMC) technique is then used to calculate the one-electron and magnetic correlation functions of this effective model. We observe that new states form inside the semiconductor gap found by HF due to the intra-orbital Coulomb interaction at the impurity 3d orbitals. In particular, the lowest unoccupied states correspond to an impurity bound state, which consists of states from mainly the CN axial ligand and the corrin ring as well as the Co e g -like orbitals. We also observe that the Co (3d) orbitals can develop antiferromagnetic correlations with the surrounding atoms depending on the filling of the impurity bound states. In addition, we make comparisons of the HF+QMC data with the density functional theory calculations. We also discuss the photoabsorption spectrum of cyanocobalamine.

Keywords

Solid State and Materials 

References

  1. 1.
    J.M. Pratt, Inorganic Chemistry of Vitamin B12 (Academic Press, 1972)Google Scholar
  2. 2.
    B. Krautler, D. Arigoni, B.T. Golding, Vitamin B12 and B12 proteins (Wiley, 1998)Google Scholar
  3. 3.
    Chemistry and Biochemistry of B12, edited by R. Banerjee (Wiley, 1999)Google Scholar
  4. 4.
    K.L. Brown, Chem. Rev. 105, 2075 (2005)CrossRefGoogle Scholar
  5. 5.
    D.C. Hodgkin, J. Kamper, M. Mackay, J.W. Pickworth, K.N. Trueblood, J.G. White, Nature 178, 64 (1956)ADSCrossRefGoogle Scholar
  6. 6.
    A. Firth, H.A.O. Hill, J.M. Pratt, R.J.P. Williams, W.R. Jackson, Biochemistry 6, 2178 (1967)CrossRefGoogle Scholar
  7. 7.
    H. Ohno, H. Munekata, T. Penney, S. von Molnar, L.L. Chang, Phys. Rev. Lett. 68, 2664 (1992)ADSCrossRefGoogle Scholar
  8. 8.
    H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. End, S. Katsumoto, Y. Iye, Appl. Phys. Lett. 69, 363 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    T. Jungwirth, J. Sinova, A.H. MacDonald, B.L. Gallagher, V. Novak, K.W. Edmonds, A.W. Rushforth, R.P. Campion, C.T. Foxon, L. Eaves, E. Olejnik, J. Masek, S.-R. Eric Yang, J. Wunderlich, C. Gould, L.W. Molenkamp, T. Dietl, H. Ohno, Phys. Rev. B 76, 125206 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    M. Ichimura, K. Tanikawa, S. Takahashi, G. Baskaran, S. Maekawa, in Foundations of Quantum Mechanics in the Light of New Technology, edited by S. Ishioka, K. Fujikawa (World Scientific, 2006)Google Scholar
  11. 11.
    N. Bulut, K. Tanikawa, S. Takahashi, S. Maekawa, Phys. Rev. B 76, 045220 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    Y. Tomoda, N. Bulut, S. Maekawa, Physica B 404, 1159 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    F.D.M. Haldane, P.W. Anderson, Phys. Rev. B 13, 2553 (1976)ADSCrossRefGoogle Scholar
  14. 14.
    P.W. Anderson, Phys. Rev. 124, 1 (1961)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    J.E. Hirsch, R.M. Fye, Phys. Rev. Lett. 56, 2521 (1986)ADSCrossRefGoogle Scholar
  16. 16.
    K.P. Jensen, S.P.A. Sauer, T. Liljefors, P. Norrby, Organometallics 20, 550 (2001)CrossRefGoogle Scholar
  17. 17.
    T. Andruniow, P.M. Kozlowski, M.Z. Zgierski, J. Chem. Phys. 115, 16 (2001)CrossRefGoogle Scholar
  18. 18.
    L. Ouyang, L. Randaccio, P. Rulis, E.Z. Kurmaev, A. Moewes, W.Y. Ching, J. Mol. Struct. (Theochem) 622, 221 (2003)CrossRefGoogle Scholar
  19. 19.
    E.Z. Kurmaev, A. Moewes, L. Ouyang, L. Randaccio, P. Rulis, W.Y. Ching, M. Bach, M. Neumann, Europhys. Lett. 62, 582 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    L. Ouyang, P. Rulis, W.Y. Ching, G. Nardin, L. Randaccio, Inorg. Chem. 43, 1235 (2004)CrossRefGoogle Scholar
  21. 21.
    C. Rovira, P.M. Kozlowski, J. Phys. Chem. B 111, 3251 (2007)CrossRefGoogle Scholar
  22. 22.
    S. Mebs, J. Henn, B. Dittrich, C. Paulmann, P. Luger, J. Phys. Chem. A 113, 8366 (2009)CrossRefGoogle Scholar
  23. 23.
    H. Solheim, K. Kornobis, K. Ruud, P.M. Kozlowski, J. Phys. Chem. B 115, 737 (2011)CrossRefGoogle Scholar
  24. 24.
    K. Kornobis, N. Kumar, B.M. Wong, P. Lodowski, M. Jaworska, T. Andruniow, K. Ruud, P.M. Kozlowski, J. Phys. Chem. A 115, 1280 (2011)CrossRefGoogle Scholar
  25. 25.
    A.J. Reig, K.S. Conrad, T.C. Brunold, Inorg. Chem. 51, 2867 (2012)CrossRefGoogle Scholar
  26. 26.
    K. Kornobis, N. Kumar, P. Lodowski, M. Jaworska, P. Piecuch, J.J. Lutz, B.M. Wong, P.M. Kozlowski, J. Comp. Chem. 34, 987 (2013)CrossRefGoogle Scholar
  27. 27.
    H. Chen, M. Ikeda-Saito, S. Shaik, J. Am. Chem. Soc. 130, 14778 (2008)CrossRefGoogle Scholar
  28. 28.
    S. Maekawa, T. Tohyama, S.E. Barnes, S. Ishihara, W. Koshibae, G. Khaliullin, Physics of Transition Metal Oxides (Springer, 2004)Google Scholar
  29. 29.
    K. Yamauchi, H. Maebashi, H. Katayama-Yoshida, J. Phys. Soc. Jpn 72, 2029 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    V. Badaut, T. Shirakawa, S. Yunoki, J. Phys.: Conf. Ser. 400, 032006 (2012)ADSGoogle Scholar
  31. 31.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision D.01 (Gaussian, Inc., Wallingford CT, 2009)Google Scholar
  32. 32.
    A.E. Reed, L.A. Curtis, F. Weinhold, Chem. Rev. 88, 899 (1988)CrossRefGoogle Scholar
  33. 33.
    E.D. Glendening, J.K. Badenhoop, A.E. Reed, J.E. Carpenter, J.A. Bohmann, C.M. Morales, C.R. Landis, F. Weinhold, NBO 6.0, Theoretical Chemistry Institute, University of Wisconsin, Madison, 2013Google Scholar
  34. 34.
    O. Gunnarsson, O.K. Andersen, O. Jepsen, J. Zaanen, Phys. Rev. B 39, 1708 (1989)ADSCrossRefGoogle Scholar
  35. 35.
    Z. Kandemir, Master’s Thesis, Izmir Institute of Technology, 2013Google Scholar
  36. 36.
    L. Randaccio, M. Furlan, S. Geremia, M. Slouf, I. Srnova, D. Toffoli, Inorg. Chem. 39, 3403 (2000)CrossRefGoogle Scholar
  37. 37.
    A.D. Becke, Phys. Rev. A 38, 3098 (1988)ADSCrossRefGoogle Scholar
  38. 38.
    J.P. Perdew, Phys. Rev. B 33, 8822 (1986)ADSCrossRefGoogle Scholar
  39. 39.
    J.C. Slater, Phys. Rev. 81, 385 (1951)ADSCrossRefGoogle Scholar
  40. 40.
    F. Jensen, Introduction to Computational Chemistry (John Wiley, 2007)Google Scholar
  41. 41.
    K. Held, Adv. Phys. 56, 829 (2007)ADSCrossRefGoogle Scholar
  42. 42.
    N. Marzari, D. Vanderbilt, Phys. Rev. B 56, 12847 (1997)ADSCrossRefGoogle Scholar
  43. 43.
    I. Schnell, G. Czycholl, R.C. Albers, Phys. Rev. B 65, 075103 (2002)ADSCrossRefGoogle Scholar
  44. 44.
    I. Schnell, G. Czycholl, R.C. Albers, Phys. Rev. B 68, 245102 (2003)ADSCrossRefGoogle Scholar
  45. 45.
    V.I. Anisimov, J. Zaanen, O.K. Andersen, Phys. Rev. B 44, 943 (1991)ADSCrossRefGoogle Scholar
  46. 46.
    M.T. Czyzyk, G.A. Sawatzky, Phys. Rev. B 49, 14211 (1994)ADSCrossRefGoogle Scholar
  47. 47.
    J. Kunes, V.I. Anisimov, A.V. Lukoyanov, D. Vollhardt, Phys. Rev. B 75, 165115 (2007)ADSCrossRefGoogle Scholar
  48. 48.
    M. Karolak, G. Ulm, T.O. Wehling, V. Mazurenko, A. Poteryaev, A.I. Lichtenstein, J. Electron. Spectrosc. Relat. Phenomena 181, 11 (2010)CrossRefGoogle Scholar
  49. 49.
    S. Mayda, Master’s Thesis, Izmir Institute of Technology, 2013Google Scholar
  50. 50.
    F. Grun, R. Menasse, Experientia 6, 263 (1950)CrossRefGoogle Scholar
  51. 51.
    H. Diehl, R.W.V. Haar, R.R. Sealock, J. Am. Chem. Soc. 72, 5312 (1950)CrossRefGoogle Scholar
  52. 52.
    A.D. Becke, J. Chem. Phys. 98, 5648 (1993)ADSCrossRefGoogle Scholar
  53. 53.
    C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)ADSCrossRefGoogle Scholar
  54. 54.
    S.H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 58, 1200 (1980)ADSCrossRefGoogle Scholar
  55. 55.
    J.J. Shiang, A.G. Cole, R.J. Sension, K. Hang, Y. Weng, J.S. Trommel, L.G. Marzilli, T. Lian, J. Am. Chem. Soc. 128, 801 (2006)CrossRefGoogle Scholar
  56. 56.
    D.A. Harris, A.B. Stickrath, E.C. Carroll, R.J. Sension, J. Am. Chem. Soc. 129, 7578 (2007)CrossRefGoogle Scholar
  57. 57.
    T.A. Stich, A.J. Brooks, N.R. Buan, T.C. Brunold, J. Am. Chem. Soc. 125, 5897 (2003)CrossRefGoogle Scholar
  58. 58.
    P.H. Dederichs, S. Blügel, R. Zeller, H. Akai, Phys. Rev. Lett. 53, 2512 (1984)ADSCrossRefGoogle Scholar
  59. 59.
    A.K. McMahan, R.M. Martin, S. Satpathy, Phys. Rev. B 38, 6650 (1988)ADSCrossRefGoogle Scholar
  60. 60.
    S.M. Bacaksiz, Z. Kandemir, N. Bulut (unpublished)Google Scholar
  61. 61.
    S. Sakai, R. Arita, K. Held, H. Aoki, Phys. Rev. B 74, 155102 (2006)ADSCrossRefGoogle Scholar
  62. 62.
    A.S. Belozerov, I. Leonov, V.I. Anisimov, Phys. Rev. B 87 125138 (2013)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of PhysicsIzmir Institute of TechnologyUrlaTurkey
  2. 2.Department of Materials Science and EngineeringIzmir Institute of TechnologyUrlaTurkey

Personalised recommendations