Advertisement

Multiple solutions and corresponding power output of a nonlinear bistable piezoelectric energy harvester

  • Arkadiusz Syta
  • Grzegorz Litak
  • Michael I. Friswell
  • Sondipon Adhikari
Open Access
Regular Article

Abstract

We examine multiple responses of a vibrational energy harvester composed of a vertical beam and a tip mass. The beam is excited horizontally by a harmonic inertial force while mechanical vibrational energy is converted to electrical power through a piezoelectric patch. The mechanical resonator can be described by single or double well potentials depending on the gravity force from the tip mass. By changing the tip mass we examine the appearance of various solutions and their basins of attraction. Identification of particular solutions of the energy harvester is important as each solution may provide a different level of power output.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    P.D. Mitcheson, E.M. Yeatman, G.K. Rao, A.S. Holmes, T.C. Green, Proc. IEEE 96, 1457 (2008)CrossRefGoogle Scholar
  2. 2.
    M.F. Daqaq, R. Masana, A. Erturk, D.D. Quinn, Appl. Mech. Rev. 66, 040801 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    R.L. Harne, K.W. Wang, Smart Mat. Struct. 22, 023001 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    S.P. Pellegrini, N. Tolou, M. Schenk, J.L. Herder, J. Intell. Mater. Syst. Struct. 24, 1303 (2013)CrossRefGoogle Scholar
  5. 5.
    J. Twiefel, H. Westermann, J. Intell. Mater. Syst. Struct. 24, 1291 (2013)CrossRefGoogle Scholar
  6. 6.
    J. Cao, S. Zhou, D.J. Inman, Y. Chen, Nonlinear Dyn. 80, 1705 (2014)CrossRefGoogle Scholar
  7. 7.
    J. Cao, A. Syta, G. Litak, S. Zhou, D.J. Inman, Y. Chen, Eur. Phys. J. Plus 130, 103 (2015)CrossRefGoogle Scholar
  8. 8.
    A. Syta, C.R. Bowen, H.A. Kim, A. Rysak, G. Litak, Meccanica 50, 1961 (2015)CrossRefGoogle Scholar
  9. 9.
    M.I. Friswell, S.F. Ali, O. Bilgen, S. Adhikari, A.W. Lees, G. Litak, J. Intell. Mater. Syst. Struct. 23, 1505 (2012)CrossRefGoogle Scholar
  10. 10.
    L. Zavodney, A. Nayfeh, Int. J. Non-Linear Mechanics 24, 105 (1989)ADSCrossRefGoogle Scholar
  11. 11.
    E. Esmailzadeh, G. Nakhaie-Jazar, Int. J. Non-Linear Mechanics 33, 567 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    T.Y. Li, J.A. Yorke, Amer. Math. Monthly 82, 985 (1975)MathSciNetCrossRefGoogle Scholar
  13. 13.
    G. Litak, M. Coccolo, M.I. Friswell, S.F. Ali, S. Adhikari, A.W. Lees, O. Bilgen, in Proceedings of NSC 2012 - 4th IEEE International Conference on Nonlinear Science and Complexity, August 6-11, 2012, Budapest, Hungary, pp. 113–116.Google Scholar
  14. 14.
    J. Aguirre, J.C. Vallejo, M.A.F. Sanjuan, Phys. Rev. E 64, 066208 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    M.V. Zakrzhevsky, in Proceedings of the ASME – IDETC/EIE, August 30-September 2, 2009, San Diego, California, USA, DETC2009-86657, pp. 1411–1418.Google Scholar
  16. 16.
    J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer, 1983)Google Scholar

Copyright information

© The Author(s) 2016

This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • Arkadiusz Syta
    • 1
  • Grzegorz Litak
    • 1
  • Michael I. Friswell
    • 2
  • Sondipon Adhikari
    • 2
  1. 1.Faculty of Mechanical Engineering, Lublin University of TechnologyLublinPoland
  2. 2.College of Engineering, Swansea University Bay CampusSwanseaUK

Personalised recommendations