Advertisement

Microwave dielectric properties of Ba(Zn1/3Ta2 / 3)O3 for application in high power waveguide window

  • Bashaiah Sindam
  • K. C. James RajuEmail author
Regular Article
  • 116 Downloads
Part of the following topical collections:
  1. Topical issue: Materials for Dielectric Applications

Abstract

Higher dielectric constant, low dielectric loss and good transmission characteristics have been the goal for developing the ceramic waveguide window for high power window applications. The choice of materials having high k with low dielectric loss and reduced window size is key parameters to achieve maximum microwave transmission without unleashing microwave dissipation. The microwave dielectric properties of synthesized Ba(Zn1/3Ta2 / 3)O3 (BZT) ceramics have been studied for high power window applications. The structural studies are correlated with microwave dielectric properties of BZT. The maximum values of dielectric constant ϵ r = 30, Q × f 0 = 102 THz and near zero temperature coefficient of resonance frequency were obtained for BZT ceramics sintered at the temperature of 1550 °C for 4 h. The measured results are used to design a tapered transition from air filled waveguide to narrow (reduced width and height) dielectric filled waveguide using Heckens linear taper at a specific frequency. The simulation result shows that the lower reflection loss is obtained for the tapered transition of the narrow BZT window as compared to the standard waveguide BZT window. The return loss of –34 dB is obtained for S-band waveguide window with a bandwidth of 675 MHz. The return loss observed in the narrow BZT window is –46 dB with a bandwidth of 570 MHz at a center frequency of 3.63 GHz. Most of the disadvantages in conventional windows will be rectified using the design of the taper transion employing narrow waveguide window in high power applications.

Keywords

Sinter Temperature Microwave Dielectric Property Return Loss Super Structure Tapered Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    E. Chojnacki, T. Hays, J. Kirchgessner, H. Padamsee, Particle Accelerator Conference 3, 3177 (1997)Google Scholar
  2. 2.
    A.A. Mikhaichenko, Nucl. Instrum. Methods Phys. Res. A 355, 645 (1995)ADSCrossRefGoogle Scholar
  3. 3.
    H. Nakatsuka, N. Yoshida, I. Fukai, IEEE Trans. Plasma Sci. 16, 416 (1988)ADSCrossRefGoogle Scholar
  4. 4.
    H.K. Jenny, F.E. Vaccaro, IRE Trans. Electron Devices 3, 30 (1956)ADSCrossRefGoogle Scholar
  5. 5.
    S. Bashaiah, P.K. Sharma, K.C. James Raju, in Proceeding of 2012 5th International Conference on Computers and Devices for Communication (CODEC) (IEEE, 2012)Google Scholar
  6. 6.
    S. Nomura, K. Toyama, K. Kaneta, Jpn J. Appl. Phys. 21, L624 (1982)ADSCrossRefGoogle Scholar
  7. 7.
    I.M. Reaney, J. Am. Ceram. Soc. 89, 2063 (2006)Google Scholar
  8. 8.
    B. Sindam, K.C. James Raju, Mater. Res. Express. 1, 015701 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    L. Shaojun, V.A. Merrick, N. Newman, J. Eur. Ceram. Soc. 26, 3273 (2006)CrossRefGoogle Scholar
  10. 10.
    S. Kawashima, Am. Ceram. Soc. Bull. 72, 120 (1993)Google Scholar
  11. 11.
    C.H. Lu, C.C. Tsai, Mater. Sci. Eng. B 55, 95 (1998)CrossRefGoogle Scholar
  12. 12.
    S. Bashaiah, K.C. James Raju, J. Mater. Sci.: Mater. Electron. 26, 3997 (2015)Google Scholar
  13. 13.
    M.R. Varma, S. Biju, M.T. Sebastian, J. Eur. Ceram. Soc. 26, 1903 (2006)CrossRefGoogle Scholar
  14. 14.
    K.P. Surendran, P. Mohanan, M.T. Sebastian, J. Solid State Chem. 177, 4031 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    C.Y. Fang et al., J. Electroceram. 22, 125 (2009)CrossRefGoogle Scholar
  16. 16.
    D. Agrawal, Trans. Indian Ceram. Soc. 65, 129 (2006)CrossRefGoogle Scholar
  17. 17.
    K. Konashi, I. Sato, S. Yamaguchi, J. Ohshika, Nucl. Instrum. Methods Phys. Res. A 344, 426 (1994)ADSCrossRefGoogle Scholar
  18. 18.
    E. Chojnacki, T. Hays, J. Kirchgessner, H. Padamsee, Particle Accel. Conf. 3, 3177 (1997)Google Scholar
  19. 19.
    L. Young, IRE Trans. Microwave Theory Tech. MMT-8, 645 (1960)Google Scholar
  20. 20.
    S.B. Cohn, IRE Trans. Microwave Theory Tech. 3, 16 (1955)ADSCrossRefGoogle Scholar
  21. 21.
    B.W. Hakki, P.D. Colemann, IEEE Trans. Microwave Theory Techn. 18, 402 (1960)ADSCrossRefGoogle Scholar
  22. 22.
    W.E. Courtney, IEEE Trans. Microwave Theory Techn. 18, 476 (1970)ADSCrossRefGoogle Scholar
  23. 23.
    J. Krupka, K. Derzakowski, B. Riddle, J. Baker-Jarvis, Meas. Sci. Technol. 9, 1751 (1998)ADSCrossRefGoogle Scholar
  24. 24.
    J. Krupka, Wei-Te Huang, Mean-Jue Tung, Meas. Sci. Technol. 16, 1014 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    J. Krupka, Meas. Sci. Technol. 17, R55 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    R.W. Klopfenstein, Proc. IRE 44, 31 (1956)CrossRefGoogle Scholar
  27. 27.
    R.P. Hecken, IEEE Trans. Microwave Theory Techn. MTT-20, 734 (1972)Google Scholar
  28. 28.
    R.C. Johnson, IEEE Trans. Microwave Theory Techn. 7, 374 (1959)ADSCrossRefGoogle Scholar
  29. 29.
    P.A. Rizzi, in Microwave Engineering Passive Circuits (Prentice Hall of India Plt, 1999), pp. 208–2013Google Scholar
  30. 30.
    L. Lu, M.O. Lai, Mechanical Alloying (Kluwer Academic Publishers, Boston, 1998)Google Scholar
  31. 31.
    D. Pamu, G.K.L. Narayana, K.C. James Raju, J. Am. Ceram. Soc. 95, 126 (2012)CrossRefGoogle Scholar
  32. 32.
    J. Wang, W. Lu, W. Lei, Jpn J. Appl. Phys. 51, 041501 (2012)ADSGoogle Scholar
  33. 33.
    M.T. Sebastien, in Dielectric Materials for Wireless Communication (Elsevier, London, 2008), pp. 100–120Google Scholar
  34. 34.
    L. Nedelcu, M.I. Toacsan, M.G. Banciu, A. Ioachim, J. Alloys Compd. 509, 477 (2011)CrossRefGoogle Scholar
  35. 35.
    P.K. Davies, J. Tong, J. Am. Ceram. Soc. 80, 727 (1997)Google Scholar
  36. 36.
    H. Ouchi, M. Okajima, H. Ito, J. Electroceram. 2, 1 (1996)Google Scholar
  37. 37.
    S. Kawashima, M. Nishida, I. Ueda, H. Ouchi, S. Hayakawa, J. Am. Ceram. Soc. 66, 421 (1983)CrossRefGoogle Scholar
  38. 38.
    S.B. Desu, H.M. O’Bryan, J. Am. Ceram. Soc. 68, 546 (1985)CrossRefGoogle Scholar
  39. 39.
    L. Nedelcu, M.I. Toacsan, M.G. Banciu, A. Ioachim, J. Alloys Compd. 509, 477 (2011)CrossRefGoogle Scholar
  40. 40.
    J. Wang, W. Lu, W. Lei, Jpn J. Appl. Phys. 51, 041501 (2012)ADSGoogle Scholar
  41. 41.
    S.B. Cohn, IRE Trans. Microwave Theory Technol. 3, 16 (1955)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.School of Physics, University of HyderabadHyderabadIndia
  2. 2.Advanced Centre of Research in High Energy Materials (ACRHEM), University of HyderabadHyderabadIndia

Personalised recommendations