Higher-order aggregate networks in the analysis of temporal networks: path structures and centralities

Regular Article
Part of the following topical collections:
  1. Topical issue: Temporal Network Theory and Applications

Abstract

Despite recent advances in the study of temporal networks, the analysis of time-stamped network data is still a fundamental challenge. In particular, recent studies have shown that correlations in the ordering of links crucially alter causal topologies of temporal networks, thus invalidating analyses based on static, time-aggregated representations of time-stamped data. These findings not only highlight an important dimension of complexity in temporal networks, but also call for new network-analytic methods suitable to analyze complex systems with time-varying topologies. Addressing this open challenge, here we introduce a novel framework for the study of path-based centralities in temporal networks. Studying betweenness, closeness and reach centrality, we first show than an application of these measures to time-aggregated, static representations of temporal networks yields misleading results about the actual importance of nodes. To overcome this problem, we define path-based centralities in higher-order aggregate networks, a recently proposed generalization of the commonly used static representation of time-stamped data. Using data on six empirical temporal networks, we show that the resulting higher-order measures better capture the true, temporal centralities of nodes. Our results demonstrate that higher-order aggregate networks constitute a powerful abstraction, with broad perspectives for the design of new, computationally efficient data mining techniques for time-stamped relational data.

References

  1. 1.
    P. Holme, J. Saramäki, Phys. Rep. 519, 97 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    P. Holme, Eur. Phys. J. B 88, 234 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    J.L. Iribarren, E. Moro, Phys. Rev. Lett. 103, 038702 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    M. Karsai, M. Kivelä, R.K. Pan, K. Kaski, J. Kertész, A.L. Barabási, J. Saramäki, Phys. Rev. E 83, 025102 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    L.E.C. Rocha, F. Liljeros, P. Holme, PLoS Comput. Biol. 7, e1001109 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    M. Starnini, A. Baronchelli, A. Barrat, R. Pastor-Satorras, Phys. Rev. E 85, 056115 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    N. Perra, A. Baronchelli, D. Mocanu, B. Goncalves, R. Pastor-Satorras, A. Vespignani, Phys. Rev. Lett. 109, 238701 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    N. Perra, B. Gonçalves, R. Pastor-Satorras, A. Vespignani, Sci. Rep. 2, 469 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    T. Hoffmann, M.A. Porter, R. Lambiotte, Random Walks on stochastic temporal networks, in Temporal Networks, Understanding Complex Systems, edited by P. Holme, J. Saramki (Springer, Berlin, Heidelberg, 2013), pp. 295−313Google Scholar
  10. 10.
    T. Takaguchi, N. Masuda, P. Holme, PLoS ONE 8, e68629 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    L.E.C. Rocha, V.D. Blondel, PLoS Comput. Biol. 9, e1002974 (2013)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    M. Karsai, N. Perra, A. Vespignani, Sci. Rep. 4, 4001 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    H.H. Jo, J.I. Perotti, K. Kaski, J. Kertész, Phys. Rev. X 4, 011041 (2014)Google Scholar
  14. 14.
    H.H.K. Lentz, T. Selhorst, I.M. Sokolov, Phys. Rev. Lett. 110, 118701 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    R. Pfitzner, I. Scholtes, A. Garas, C.J. Tessone, F. Schweitzer, Phys. Rev. Lett. 110, 198701 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    R. Lambiotte, V. Salnikov, M. Rosvall, J. Complex Networks 3, 177 (2015)MathSciNetCrossRefGoogle Scholar
  17. 17.
    I. Scholtes, N. Wider, R. Pfitzner, A. Garas, C.J. Tessone, F. Schweitzer, Nat. Commun. 5, 5024 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    M. Rosvall, A.V. Esquivel, A. Lancichinetti, J.D. West, R. Lambiotte, Nat. Commun. 5, 4630 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    R. Pan, J. Saramäki, Phys. Rev. E 84, 1 (2011)Google Scholar
  20. 20.
    H. Kim, R. Anderson, Phys. Rev. E 85, 1 (2012)Google Scholar
  21. 21.
    T. Takaguchi, Y. Yano, Y. Yoshida, Eur. Phys. J. B 89, 35 (2015)MathSciNetCrossRefGoogle Scholar
  22. 22.
    D. Kempe, J. Kleinberg, A. Kumar, in Proceedings of the thirty-second annual ACM symposium on Theory of computing ACM, 2000, pp. 504−513Google Scholar
  23. 23.
    N.G. de Bruijn, Koninklijke Nederlandse Akademie v. Wetenschappen 49, 758764 (1946)Google Scholar
  24. 24.
    B. Blonder, A. Dornhaus, PLoS ONE 6, e20298 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    R. Michalski, S. Palus, P. Kazienko, in Business Information Systems, Lecture notes in business information processing, edited by W. Abramowicz (Springer, Berlin, Heidelberg, 2011), Vol. 87, pp. 197–206Google Scholar
  26. 26.
    P. Vanhems, A. Barrat, C. Cattuto, J.F. Pinton, N. Khanafer, C. Regis, B.A. Kim, B. Comte, N. Voirin, PLoS ONE 8, e73970 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    N. Eagle, A. (Sandy) Pentland, Personal Ubiquitous Comput. 10, 255 (2006)CrossRefGoogle Scholar
  28. 28.
    Transport for London, Rolling Origin and Destination Survey (RODS) database (2014)Google Scholar
  29. 29.
    RITA TransStat Origin and Destination Survey database, available online 2014Google Scholar
  30. 30.
    L.C. Freeman, Sociometry 40, 35 (1977)CrossRefGoogle Scholar
  31. 31.
    S. Borgatti, M. Everett, J. Johnson, Analyzing Social Networks (SAGE Publications, 2013)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.ETH Zürich, Chair of Systems Design, Weinbergstrasse 56/58ZürichSwitzerland

Personalised recommendations