Advertisement

A comparison of different powder compaction processes adopted for synthesis of lead-free piezoelectric ceramics

  • M.L.V. MaheshEmail author
  • V.V. Bhanu Prasad
  • A.R. James
Regular Article
Part of the following topical collections:
  1. Topical issue: Materials for Dielectric Applications

Abstract

Barium zirconium titanate, Ba(Zr0.15Ti0.85)O3 nano-crystalline powders were synthesized using high energy ball milling. The calcined powders were compacted adopting two different approaches viz. the conventional uniaxial pressing and cold-isostatic pressing (CIP) and the compacts were sintered at 1350 °C. A single phase perovskite structure was observed in both cases. BZT ceramics compacted using CIP technique exhibited enhanced dielectric and ferroelectric properties compared to ceramics compacted by uniaxial pressing. The polarization current peaks have been used in this paper as an experimental evidence to prove the existence of ferroelectricity in the BZT ceramics under study. The peak polarization current was found to be ~700% higher in case of cold iso-statically compacted ceramics. Similarly electric field induces strain showed a maximum strain (S max) of 0.08% at an electric field of 28 kV/cm. The dielectric and ferroelectric properties observed are comparable to single crystals of the same material.

Keywords

Hysteresis Loop Ferroelectric Property Polarization Current High Energy Ball Milling Cold Isostatic Pressing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    B. Jaffe, W. Cook, H. Jaffe, Piezoelectric Ceramics (Academic Press, London, 1971)Google Scholar
  2. 2.
    G.H. Haertling, J. Am. Ceram. Soc. 82, 797 (1999)CrossRefGoogle Scholar
  3. 3.
    M.L.V. Mahesh, V.V. Bhanu Prasad, A.R. James, J. Alloys Compd. 611, 43 (2014)CrossRefGoogle Scholar
  4. 4.
    Wenfeng Liu, Xiaobing Ren, Phys. Rev. Lett. 103, 257602 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    A.J. Moulson, J.M. Herbert. Electroceramics: Materials, Properties, Applications (Chapman & Hall, London, 1990)Google Scholar
  6. 6.
    L. Pintilie, M. Alexe, Appl. Phys. Lett. 87, 112903 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    J.F. Scott, Ferroelectr. Rev. 1, 1 (1998)CrossRefGoogle Scholar
  8. 8.
    J.F. Scott, J. Phys.: Condens. Matter 20, 021001 (2008)ADSGoogle Scholar
  9. 9.
    M.L.V. Mahesh, V.V. Bhanu Prasad, A.R. James, J. Electron. Mater. 42, 3547 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    M.L.V. Mahesh, V.V. Bhanu Prasad, A.R. James, J. Mater. Sci.: Mater. Electron. 24, 4684 (2013)Google Scholar
  11. 11.
    Joint Committee on Powder Diffraction Standards Diffraction Data File no.36-0019, International Centre for Diffraction Data (ICDD, formerly JCPDS), Newton Square, PA, 2001Google Scholar
  12. 12.
    B. Garbarz-Glos, R. Bujakiewicz-Koronska, D. Majda, M. Antonova, A. Kalvane, C. Kus, Integrated Ferroelectrics 108, 106 (2009)CrossRefGoogle Scholar
  13. 13.
    Wei Cai, Chunlin Fu, Jiacheng Gao, Huaqiang Chen, J. Alloys Compd. 480, 870 (2009)CrossRefGoogle Scholar
  14. 14.
    F. Mouraa, A.Z. Simoes, B.D. Stojanovic, M.A. Zaghete, E. Longoa, J.A. Varela. J. Alloys Compd. 462, 129 (2008)CrossRefGoogle Scholar
  15. 15.
    Hongwei Chen, Chuanren Yang, Chunlin Fu, Jun Shi, Jihua Zhang, Wenjian Leng, J. Mater. Sci.: Mater. Electron. 19, 379 (2008)CrossRefGoogle Scholar
  16. 16.
    M. Deluca, C.A. Vasilescu, A.C. Ianculescu, D.C. Berger, J. Eur. Ceram. Soc. 32, 3551 (2012)CrossRefGoogle Scholar
  17. 17.
    L.P. Curecheriu, R. Frunza, A. Ianculescu, Processing and Application of Ceramics 2, 81 (2008)CrossRefGoogle Scholar
  18. 18.
    N. Binhayeeniyi, P. Sukvisut, C. Thanachayanont, S. Muensit, Mater. Lett. 64, 305 (2010)CrossRefGoogle Scholar
  19. 19.
    X.G. Tang, K.-H. Chew, H.L.W. Chan, Acta Mater. 52, 5177 (2004)CrossRefGoogle Scholar
  20. 20.
    Qing Xu, Di Zhan, Duan-Ping Huang, Han-Xing Liu, Wen Chen, Feng Zhang, Mater. Res. Bull. 47, 1674 (2012)CrossRefGoogle Scholar
  21. 21.
    Z. Yu, R. Guo, A.S. Bhalla, Appl. Phys. Lett. 77, 1535 (2000)ADSCrossRefGoogle Scholar
  22. 22.
    Z. Yu, R. Guo, A.S. Bhalla, J. Appl. Phys. 88, 410 (2000)ADSCrossRefGoogle Scholar
  23. 23.
    H.L. Zhang, J.-F. Li, B.-P. Zhang, Acta Mater. 55, 171 (2007)CrossRefGoogle Scholar
  24. 24.
    Yunfei Chang, Zupei Yang, Lingling Wei, J. Am. Ceram. Soc. 90, 1656 (2007)CrossRefGoogle Scholar
  25. 25.
    Ren-Chuan Chang, Sheng-Yuan Chu, Yi-Fang Lin,Cheng-Shong Hong, Po-Ching Kao, Chun-Hsien Lu, Sens. Actuat. A 138, 355 (2007)CrossRefGoogle Scholar
  26. 26.
    Wei Cai, Chunlin Fu, Jiacheng Gao, Xiaoling Deng, J. Mater. Sci: Mater. Electron. 21, 317 (2010)Google Scholar
  27. 27.
    Z. Yu, C. Ang, R. Guo, A.S. Bhalla, J. Appl. Phys. 92, 1489 (2002)ADSCrossRefGoogle Scholar
  28. 28.
    P.W. Rehrig, S.-E. Park, S. Trolier-McKinstry, G.L. Messing, B. Jones, T.R. Shrout, J. Appl. Phys. 86, 1657 (1999)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Ceramics and Composites Group, Defence Metallurgical Research LaboratoryHyderabadIndia

Personalised recommendations