Advertisement

Electronic structure of CeRu4Sn6: a density functional plus dynamical mean field theory study

  • Philipp Wissgott
  • Karsten HeldEmail author
Regular Article

Abstract

The Kondo system CeRu4Sn6 shows a strong anisotropy in its electric, optic and magnetic properties. We employ density functional theory plus dynamical mean field theory and show that the predominant Ce-f state has total angular moment J = 5 / 2 and z-component m J = ± 1 / 2 in agreement with recent X-ray absorption experiments. There is also an admixture of m J = ± 3 / 2 which is reduced in favor of m J = ± 1 / 2 with the onset of the Kondo effect. Even though CeRu4Sn6 has the direct gap of a Kondo insulator through most of the Brillouin zone it remains weakly metallic. This is because of (i) a band crossing in the z-direction and (ii) a negative indirect gap.

Keywords

Solid State and Materials 

References

  1. 1.
    G.R. Stewart, Rev. Mod. Phys. 56, 755 (1984)ADSCrossRefGoogle Scholar
  2. 2.
    P. Coleman, in Handbook of Magnetism and Advanced Magnetic Materials, edited by H. Kronmüller, S. Parkin (John Wiley and Sons, West Sussex, 2007), pp. 95−148Google Scholar
  3. 3.
    T. Takabatake, F. Teshima, H. Fujii, S. Nishigori, T. Suzuki, T. Fujita, Y. Yamaguchi, J. Sakurai, D. Jaccard, Phys. Rev. B 41, 9607 (1990)ADSCrossRefGoogle Scholar
  4. 4.
    S.H. Ikeda, K. Miyake, J. Phys. Soc. Jpn 65, 1769 (1996)ADSCrossRefGoogle Scholar
  5. 5.
    J. Moreno, P. Coleman, Phys. Rev. Lett. 84, 342 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    T. Yamada, Y. Ono, Phys. Rev. B 85, 165114 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    M. Kyogaku, Y. Kitaoka, H. Nakamura, K. Asayama, T. Takabatake, F. Teshima, H. Fujii, J. Phys. Soc. Jpn 59, 1728 (1990)ADSCrossRefGoogle Scholar
  8. 8.
    P. Schlottmann, Phys. Rev. B 46, 998 (1992)ADSCrossRefGoogle Scholar
  9. 9.
    A. Prokofiev, S. Paschen, Crystal Growth and Stoichiometry of Strongly Correlated Intermetallic Cerium Compounds, in Modern Aspects of Bulk Crystal and Thin Film Preparation, edited by N. Kolesnikov, E. Borisenko (Intech, 2012)Google Scholar
  10. 10.
    G. Venturini, B. Chafik El Idrissi, J.F. Maréché, B. Malaman, Mater. Res. Bull. 25, 1541 (1990)CrossRefGoogle Scholar
  11. 11.
    I. Das, E.V. Sampathkumaran, Phys. Rev. B 46, 4250 (1992)ADSCrossRefGoogle Scholar
  12. 12.
    V. Guritanu, P. Wissgott, T. Weig, H. Winkler, J. Sichelschmidt, M. Scheffler, A. Prokofiev, S. Kimura, T. Iizuka, A.M. Strydom, M. Dressel, F. Steglich, K. Held, S. Paschen, Phys. Rev. B 87, 115129 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    G. Kotliar, S.Y. Savrasov, K. Haule, V.S. Oudovenko, O. Parcollet, C.A. Marianetti, J. Rev. Mod. Phys. 78, 865 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    K. Held, Adv. Phys. 56, 829 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    J. Hänel, H. Winkler, M. Ikeda, J. Larrea, V. Martelli, A. Prokofiev, E. Bauer, S. Paschen, J. Electron. Mater. 43, 2440 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    A. Strydom, Z. Guo, S. Paschen, R. Viennois, F. Steglich, J. Phys. B 359, 293 (2005)CrossRefGoogle Scholar
  17. 17.
    H. Winkler, K.-A. Lorenzer, A. Prokofiev, S. Paschen, J. Phys.: Conf. Ser. 391, 012077 (2012)ADSGoogle Scholar
  18. 18.
    S. Paschen, H. Winkler, T. Nezu, M. Kriegisch, G. Hilscher, J. Custers, A. Prokofiev, A. Strydom, J. Phys.: Conf. Ser. 200, 012156 (2010)ADSGoogle Scholar
  19. 19.
    H. Winkler, Ph.D. thesis, Vienna Unviersity of Technology, 2013Google Scholar
  20. 20.
    M. Sundermann, F. Strigari, T. Willers, H. Winkler, A. Prokofiev, J.M. Ablett, J.P. Rueff, D. Schmitz, E. Weschke, M. Moretti Sala, A. Al-Zein, A. Tanaka, M.W. Haverkort, L.H. Tjeng, S. Paschen, A. Severing, Sci. Rep. 5, 17937 (2015)CrossRefGoogle Scholar
  21. 21.
    R. Pöttgen, R.-D. Hoffmann, E.V. Sampathkumaran, I. Das, B.D. Mosel, R. Müllmann, J. Solid State Chem. 134, 326 (1997)ADSCrossRefGoogle Scholar
  22. 22.
    P. Blaha, K. Schwarz, P. Sorantin, S. Trickey, J. Comput. Phys. Commun. 59, 399 (1990)ADSCrossRefGoogle Scholar
  23. 23.
    H. Winkler, Ph.D. thesis, TU Wien, 2013Google Scholar
  24. 24.
    N. Marzari, D. Vanderbilt, Phys. Rev. B 56, 12847 (1997)ADSCrossRefGoogle Scholar
  25. 25.
    J. Kunes, R. Arita, P. Wissgott, A. Toschi, H. Ikeda, K. Held, J. Comput. Phys. Commun. 181, 1888 (2010)ADSzbMATHCrossRefGoogle Scholar
  26. 26.
    V.I. Anisimov, J. Zaanen, O.K. Andersen, Phys. Rev. B 44, 943 (1991)ADSCrossRefGoogle Scholar
  27. 27.
    J.E. Hirsch, R.M. Fye, Phys. Rev. Lett. 56, 2521 (1986)ADSCrossRefGoogle Scholar
  28. 28.
    G. Keller, K. Held, V. Eyert, D. Vollhardt, V.I. Anisimov, Phys. Rev. B 70, 205116 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    A.C. Hewson, The Kondo Problem to Heavy Fermions (Cambridge University Press, Cambridge, 1993)Google Scholar
  30. 30.
    G. Aeppli, Z. Fisk, Condens. Matter Phys. 16, 155 (1992)Google Scholar
  31. 31.
    P.S. Riseborough, Adv. Phys. 49, 257 (2000)ADSCrossRefGoogle Scholar
  32. 32.
    P. Coleman, Heavy Fermions: electrons at the edge of magnetism, in Handbook of Magnetism and Advanced Magnetic Materials, edited by H. Kronmuller, S. Parkin. Fundamentals and Theory (John Wiley and Sons, 2007), Vol. 1, pp. 95−148Google Scholar
  33. 33.
    T.J. Sato, H. Kadowaki, T. Takabatake, H. Fujii, Y. Isikawa, J. Phys.: Condens. Matter 8, 8183 (1996)ADSGoogle Scholar
  34. 34.
    G.M. Kalvius, T. Takabatake, A. Kratzer, R. Wappling, D.R. Noakes, S.J. Flaschin, F.J. Burghart, R. Kadono, I. Watanabe, A. Brückl, K. Neumaier, K. Andres, K. Kobayashi, G. Nakamoto, H. Fuji, Hyperfine Interactions 104, 157 (1997)ADSCrossRefGoogle Scholar
  35. 35.
    V.A. Yartys, B. Ouladdiaf, O. Isnard, O.Yu. Khyzhun, K.H.J. Buschow, J. Alloys Compd. 359, 62 (2003)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute of Solid State PhysicsViennaAustria

Personalised recommendations