Nanophononics: state of the art and perspectives

  • Sebastian Volz
  • Jose Ordonez-Miranda
  • Andrey Shchepetov
  • Mika Prunnila
  • Jouni Ahopelto
  • Thomas Pezeril
  • Gwenaelle Vaudel
  • Vitaly Gusev
  • Pascal Ruello
  • Eva M. Weig
  • Martin Schubert
  • Mike Hettich
  • Martin Grossman
  • Thomas Dekorsy
  • Francesc Alzina
  • Bartlomiej Graczykowski
  • Emigdio Chavez-Angel
  • J. Sebastian Reparaz
  • Markus R. Wagner
  • Clivia M. Sotomayor-Torres
  • Shiyun Xiong
  • Sanghamitra Neogi
  • Davide Donadio
Open Access
Colloquium

Abstract

Understanding and controlling vibrations in condensed matter is emerging as an essential necessity both at fundamental level and for the development of a broad variety of technological applications. Intelligent design of the band structure and transport properties of phonons at the nanoscale and of their interactions with electrons and photons impact the efficiency of nanoelectronic systems and thermoelectric materials, permit the exploration of quantum phenomena with micro- and nanoscale resonators, and provide new tools for spectroscopy and imaging. In this colloquium we assess the state of the art of nanophononics, describing the recent achievements and the open challenges in nanoscale heat transport, coherent phonon generation and exploitation, and in nano- and optomechanics. We also underline the links among the diverse communities involved in the study of nanoscale phonons, pointing out the common goals and opportunities.

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    E. Pop, Nano Res. 3, 147 (2010)CrossRefGoogle Scholar
  2. 2.
    Z. Yan, G. Liu, J.M. Khan, A.A. Balandin, Nat. Commun. 3, 827 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    G.J. Snyder, E.S. Toberer, Nat. Mater. 7, 105 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    K. Biswas et al., Nature 489, 414 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    M. Aspelmeyer, T.J. Kippenberg, F. Marquardt, Rev. Mod. Phys. 86, 1391 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    R.P.G. McNeil et al., Nature 477, 439 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    S. Hermelin et al., Nature 477, 435 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    C. Rossignol et al., Appl. Phys. Lett. 93, 123901 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    N. Zen et al., Nat. Commun. 5, 1 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    J.-K. Yu et al., Nat. Nanotechnol. 5, 718 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    N. Li et al., Rev. Mod. Phys. 84, 1045 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    E.W. Montroll, J. Chem. Phys. 18, 183 (1950)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    H. Baltes, E. Hilf, Solid State Commun. 12, 369 (1973)ADSCrossRefGoogle Scholar
  14. 14.
    D.G. Cahill et al., J. Appl. Phys. 93, 793 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    A.I. Hochbaum et al., Nature 451, 163 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    R. Chen et al., Phys. Rev. Lett. 101, 105501 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    D. Li et al., Appl. Phys. Lett. 83, 2934 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    M.P. Zaitlin, L.M. Scherr, A.C. Anderson, Phys. Rev. B 12, 4487 (1975)ADSCrossRefGoogle Scholar
  19. 19.
    M. Kazan et al., J. Appl. Phys. 107, 083503 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    S. Volz, in Thermal Nanosystems and Nanomaterials, Topics in Appl. Phys. (Springer, Berlin, 2009), Vol. 118Google Scholar
  21. 21.
    S. Volz, Micro and Nano Heat Transfer, Topics in Appl. Phys. (Springer, Berlin, 2008), Vol. 107Google Scholar
  22. 22.
    M.N. Luckyanova et al., Science 338, 936 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    J. Ravichandran et al., Nat. Mater. 13, 168 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    I. Savic, D. Donadio, F. Gygi, G. Galli, Appl. Phys. Lett. 102, 073113 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    S. Baroni, S. de Gironcoli, A. Dal Corso, P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001)ADSCrossRefGoogle Scholar
  26. 26.
    A. Ward, D.A. Broido, D.A. Stewart, G. Deinzer, Phys. Rev. B 80, 125203 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    G. Fugallo, M. Lazzeri, L. Paulatto, F. Mauri, Phys. Rev. B 88, 045430 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    D.A. Broido et al., Appl. Phys. Lett. 91, 231922 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    A. Cepellotti et al., Nat. Commun. 6, 1 (2015)CrossRefGoogle Scholar
  30. 30.
    S. Lee, D. Broido, K. Esfarjani, G. Chen, Nat. Commun. 6, 7290 (2015)CrossRefGoogle Scholar
  31. 31.
    A.J.C. Ladd, B. Moran, W.G. Hoover, Phys. Rev. B 34, 5058 (1986)ADSCrossRefGoogle Scholar
  32. 32.
    S. Volz et al., Phys. Rev. B 54, 340 (1996)ADSCrossRefGoogle Scholar
  33. 33.
    J.E. Turney, A.J.H. McGaughey, C.H. Amon, Phys. Rev. B 79, 224305 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    O.N. Bedoya-Martinez, J.L. Barrat, D. Rodney, Phys. Rev. B 89, 014303 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    R. Landauer, Phil. Mag. 21, 863 (1970)ADSCrossRefGoogle Scholar
  36. 36.
    N. Mingo, L. Yang, Phys. Rev. B 68, 245406 (2003)ADSCrossRefGoogle Scholar
  37. 37.
    W. Zhang, N. Mingo, T.S. Fisher, J. Heat Transfer 129, 483 (2006)CrossRefGoogle Scholar
  38. 38.
    N. Mingo, Phys. Rev. B 74, 125402 (2006)ADSCrossRefGoogle Scholar
  39. 39.
    J.-S. Wang, J. Wang, N. Zeng, Phys. Rev. B 74, 033408 (2006)ADSCrossRefGoogle Scholar
  40. 40.
    S. Xiong, J. Ma, S. Volz, T. Dumitrica, Small 10, 1756 (2014)CrossRefGoogle Scholar
  41. 41.
    L.V. Keldysh, Soviet Phys. J. Exp. Theor. Phys. 20, 1307 (1965)MathSciNetGoogle Scholar
  42. 42.
    D.A. Young, H.J. Maris, Phys. Rev. B 40, 3685 (1989)ADSCrossRefGoogle Scholar
  43. 43.
    I. Duchemin, D. Donadio, Phys. Rev. B 84, 115423 (2011)ADSCrossRefGoogle Scholar
  44. 44.
    P. Reddy, K. Castelino, A. Majumdar, Appl. Phys. Lett. 87, 211908 (2005)ADSCrossRefGoogle Scholar
  45. 45.
    C. Blanc et al., Appl. Phys. Lett. 103, 043109 (2013)ADSCrossRefGoogle Scholar
  46. 46.
    D.G. Cahill, Rev. Sci. Instrum. 61, 802 (1990)ADSCrossRefGoogle Scholar
  47. 47.
    Y.K. Koh, D.G. Cahill, Phys. Rev. B 76, 075207 (2007)ADSCrossRefGoogle Scholar
  48. 48.
    S. Lefèvre, S. Volz, Rev. Sci. Instrum. 76, 033701 (2005)ADSCrossRefGoogle Scholar
  49. 49.
    A. Sikora et al., Rev. Sci. Instrum. 83, 054902 (2012)ADSCrossRefGoogle Scholar
  50. 50.
    A. Sikora et al., Rev. Sci. Instrum. 84, 029901 (2013)ADSCrossRefGoogle Scholar
  51. 51.
    K.T. Regner et al., Nat. Commun. 4, 1640 (2013)ADSCrossRefGoogle Scholar
  52. 52.
    J.A. Johnson et al., Phys. Rev. Lett. 110, 025901 (2013)ADSCrossRefGoogle Scholar
  53. 53.
    E. Chávez-Ángel et al., Appl. Phys. Lett. Mater. 2, 012113 (2014)Google Scholar
  54. 54.
    J. Reparaz et al., Rev. Sci. Instrum. 85, 034901 (2014)ADSCrossRefGoogle Scholar
  55. 55.
    A.J. Minnich et al., Phys. Rev. Lett. 107, 095901 (2011)ADSCrossRefGoogle Scholar
  56. 56.
    L. Romain, Ph.D. thesis, Institut des Nanosciences de Paris, 2014Google Scholar
  57. 57.
    M. Maldovan, Nature 503, 209 (2013)ADSCrossRefGoogle Scholar
  58. 58.
    H. Lamb, Proc. R. Soc. London A 93, 114 (1917)ADSMATHCrossRefGoogle Scholar
  59. 59.
    S. Bramhavar et al., Phys. Rev. B 83, 014106 (2011)ADSCrossRefGoogle Scholar
  60. 60.
    J. Cuffe et al., Nano Lett. 12, 3569 (2012)ADSCrossRefGoogle Scholar
  61. 61.
    B. Graczykowski et al., New J. Phys. 16, 073024 (2014)ADSCrossRefGoogle Scholar
  62. 62.
    A. Shchepetov et al., Appl. Phys. Lett. 102, 192108 (2013)ADSCrossRefGoogle Scholar
  63. 63.
    G. Gopalakrishnan et al., Phys. Rev. Lett. 110, 205503 (2013)ADSCrossRefGoogle Scholar
  64. 64.
    L. Maerten, A. Bojahr, M. Bargheer, Ultrasonics 56, 148 (2015)CrossRefGoogle Scholar
  65. 65.
    Z. Liu et al., Science 289, 1734 (2000)ADSCrossRefGoogle Scholar
  66. 66.
    B. Graczykowski et al., Phys. Rev B 91, 075414 (2015)ADSCrossRefGoogle Scholar
  67. 67.
    B.L. Davis and M.I. Hussein, Phys. Rev. Lett. 112, 055505 (2014)ADSCrossRefGoogle Scholar
  68. 68.
    Y. He et al., ACS Nano 5, 1839 (2011)CrossRefGoogle Scholar
  69. 69.
    I. Maasilta and A.J. Minnich, Phys. Today 67, 27 (2014)CrossRefGoogle Scholar
  70. 70.
    S. Neogi et al., ACS Nano 9, 3820 (2015)CrossRefGoogle Scholar
  71. 71.
    M.S. Dresselhaus et al., Adv. Mater. 19, 1043 (2007)CrossRefGoogle Scholar
  72. 72.
    H. Xu et al., Phys. Rev. Lett. 112, 054301 (2014)ADSCrossRefGoogle Scholar
  73. 73.
    T. Han et al., Phys. Rev. Lett. 112, 054302 (2014)ADSCrossRefGoogle Scholar
  74. 74.
    M.R. Wagner et al., arXiv:1511.07398 (2015)
  75. 75.
    D. Schneider et al., Nano Lett. 12, 3101 (2012)CrossRefGoogle Scholar
  76. 76.
    E. Alonso-Redondo et al., Nat. Commun. 6, 8309 (2015)ADSCrossRefGoogle Scholar
  77. 77.
    V.M. García-Chocano, J. Christensen, J. Sánchez-Dehesa, Phys. Rev. Lett. 112, 144301 (2014)ADSCrossRefGoogle Scholar
  78. 78.
    M.S. Kushwaha, P. Halevi, L. Dobrzynski, B. Djafari-Rouhani, Phys. Rev. Lett. 71, 2022 (1993)ADSCrossRefGoogle Scholar
  79. 79.
    P.A. Deymier, Acoustic Metamaterials and Phononic Crystals (Springer, Berlin, 2013)Google Scholar
  80. 80.
    D. Polder, M. Van Hove, Phys. Rev. B 4, 3303 (1971)ADSCrossRefGoogle Scholar
  81. 81.
    K. Joulain et al., Surf. Sci. Rep. 57, 59 (2005)ADSCrossRefGoogle Scholar
  82. 82.
    A. Narayanaswamy, S. Shen, G. Chen, Phys. Rev. B 78, 115303 (2008)ADSCrossRefGoogle Scholar
  83. 83.
    S. Shen, A. Narayanaswamy, G. Chen, Nano Lett. 9, 2909 (2009)ADSCrossRefGoogle Scholar
  84. 84.
    E. Rousseau et al., Nat. Photon. 3, 514 (2009)ADSCrossRefGoogle Scholar
  85. 85.
    M. Francoeur, Nature Nano 10, 206 (2015)ADSCrossRefGoogle Scholar
  86. 86.
    M. Prunnila, J. Meltaus, Phys. Rev. Lett. 105, 125501 (2010)ADSCrossRefGoogle Scholar
  87. 87.
    G. Domingues, S. Volz, K. Joulain, J.-J. Greffet, Phys. Rev. Lett. 94, 085901 (2005)ADSCrossRefGoogle Scholar
  88. 88.
    S. Xiong et al., Phys. Rev. Lett. 112, 114301 (2014)ADSCrossRefGoogle Scholar
  89. 89.
    V. Chiloyan, J. Garg, K. Esfarjani, G. Chen, Nat. Commun. 6, 6755 (2015)ADSCrossRefGoogle Scholar
  90. 90.
    I. Altfeder, A.A. Voevodin, A.K. Roy, Phys. Rev. Lett. 105, 166101 (2010)ADSCrossRefGoogle Scholar
  91. 91.
    K. Kloppstech et al., arXiv:1510.06311 (2015)
  92. 92.
    J. Schoenwald, E. Burstein, J. Elson, Solid State Commun. 12, 185 (1973)ADSCrossRefGoogle Scholar
  93. 93.
    E. Burstein, W.P. Chen, Y.J. Chen, A. Hartstein, J. Vacuum Sci. Technol. 11, 1004 (1974)ADSCrossRefGoogle Scholar
  94. 94.
    D. Tilley, Opt. Acta: Int. J. Opt. 30, 1501 (1983)ADSCrossRefGoogle Scholar
  95. 95.
    D.L. Mills, Phys. Rev. B 12, 4036 (1975)ADSCrossRefGoogle Scholar
  96. 96.
    T. Kume, T. Kitagawa, S. Hayashi, K. Yamamoto, Surf. Sci. 395, 23 (1998)ADSCrossRefGoogle Scholar
  97. 97.
    J.-P. Mulet, K. Joulain, R. Carminati, J.-J. Greffet, Appl. Phys. Lett. 78, 2931 (2001)ADSCrossRefGoogle Scholar
  98. 98.
    D.-Z.A. Chen, A. Narayanaswamy, G. Chen, Phys. Rev. B 72, 155435 (2005)ADSCrossRefGoogle Scholar
  99. 99.
    D.-Z.A. Chen, G. Chen, Appl. Phys. Lett. 91, 121906 (2007)ADSCrossRefGoogle Scholar
  100. 100.
    D.-Z.A. Chen, G. Chen, Frontiers in Heat and Mass Transfer 1, 023005 (2010)Google Scholar
  101. 101.
    G. Chen, Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons (Oxford University Press, Oxford, New York, 2005)Google Scholar
  102. 102.
    K. Fuchs, Math. Proc. Cambridge Philos. Soc. 34, 100 (1938)ADSCrossRefGoogle Scholar
  103. 103.
    H. Khosravi, D.R. Tilley, R. Loudon, J. Opt. Soc. Am. A 8, 112 (1991)ADSCrossRefGoogle Scholar
  104. 104.
    D.Z.A. Chen, A. Narayanaswamy, G. Chen, Proc. ASME Heat Transfer Division 376-2, 841 (2005)Google Scholar
  105. 105.
    R. Carminati, J.-J. Greffet, Phys. Rev. Lett. 82, 1660 (1999)ADSCrossRefGoogle Scholar
  106. 106.
    A. Narayanaswamy, G. Chen, Appl. Phys. Lett. 82, 3544 (2003)ADSCrossRefGoogle Scholar
  107. 107.
    J. Le Gall, M. Olivier, J.-J. Greffet, Phys. Rev. B 55, 10105 (1997)ADSCrossRefGoogle Scholar
  108. 108.
    C.A. Pfeiffer, E.N. Economou, K.L. Ngai, Phys. Rev. B 10, 3038 (1974)ADSCrossRefGoogle Scholar
  109. 109.
    P.-O. Chapuis, M. Laroche, S. Volz, J.-J. Greffet, Appl. Phys. Lett. 92, 201906 (2008)ADSCrossRefGoogle Scholar
  110. 110.
    J. Ordonez-Miranda et al., J. Appl. Phys. 115, 054311 (2014)ADSCrossRefGoogle Scholar
  111. 111.
    C. Thomsen, H.T. Grahn, H.J. Maris, J. Tauc, Phys. Rev. B 34, 4129 (1986)ADSCrossRefGoogle Scholar
  112. 112.
    V.E. Gusev, A.A. Karabutov, Laser Optoacoustics (AIP Press, New York, 1993)Google Scholar
  113. 113.
    A. Bartels et al., Rev. Sci. Instrum. 78, 035107 (2007)ADSCrossRefGoogle Scholar
  114. 114.
    P. Emma et al., Nat. Photon. 4, 641 (2010)ADSCrossRefGoogle Scholar
  115. 115.
    S. Schäfer, W. Liang, A.H. Zewail, J. Chem. Phys. 135, 214201 (2011)ADSCrossRefGoogle Scholar
  116. 116.
    P. Yu, M. Cardona, Fundamentals of Semiconductors (Springer, Heidelberg, 1998)Google Scholar
  117. 117.
    H.J. Zeiger et al., Phys. Rev. B 45, 768 (1992)ADSCrossRefGoogle Scholar
  118. 118.
    R. Merlin, Solid State Commun. 102, 207 (1997)ADSCrossRefGoogle Scholar
  119. 119.
    T. Dekorsy, G. Cho, W. Kutt, H. Kurz, in Light Scattering in Solids VIII, edited by M. Cardona, G. Güntherodt (Springer, Berlin, 2000), Vol. 76Google Scholar
  120. 120.
    P. Ruello, V. Gusev, Ultrasonics 56, 21 (2015)CrossRefGoogle Scholar
  121. 121.
    M. Perner et al., Phys. Rev. Lett. 85, 792 (2000)ADSCrossRefGoogle Scholar
  122. 122.
    V. Gusev, Opt. Commun. 94, 76 (1992)ADSCrossRefGoogle Scholar
  123. 123.
    J. Demsar, T. Dekorsy, in Optical Techniques for Solid-State Materials Characterization, edited by R.P. Prasankumar and J.T. Antoinette (CRC Press, Boca Raton, 2012)Google Scholar
  124. 124.
    G. Tas, H.J. Maris, Phys. Rev. B 49, 15046 (1994)ADSCrossRefGoogle Scholar
  125. 125.
    O.B. Wright, Phys. Rev. B 49, 9985 (1994)ADSCrossRefGoogle Scholar
  126. 126.
    O. Wright, V.E. Gusev, IEEE Trans. Ultrasonics, Ferroelectrics, Frequency Control 42, 331 (1995)CrossRefGoogle Scholar
  127. 127.
    M. Lejman et al., J. Opt. Soc. Am. B 31, 282 (2014)ADSCrossRefGoogle Scholar
  128. 128.
    O. Matsuda et al., Phys. Rev. Lett. 93, 095501 (2004)ADSCrossRefGoogle Scholar
  129. 129.
    T. Pezeril et al., Phys. Rev. B 75, 174307 (2007)ADSCrossRefGoogle Scholar
  130. 130.
    A. Huynh et al., Phys. Rev. B 78, 233302 (2008)ADSCrossRefGoogle Scholar
  131. 131.
    M. Lejman et al., Nat. Commun. 5, 4301 (2014)ADSCrossRefGoogle Scholar
  132. 132.
    O.B. Wright, B. Perrin, O. Matsuda, V.E. Gusev, Phys. Rev. B 64, 081202 (2001)ADSCrossRefGoogle Scholar
  133. 133.
    P. Babilotte et al., Phys. Rev. B 81, 245207 (2010)ADSCrossRefGoogle Scholar
  134. 134.
    E.S.K. Young et al., Phys. Rev. B 86, 155207 (2012)ADSCrossRefGoogle Scholar
  135. 135.
    O.B. Wright, V.E. Gusev, Appl. Phys. Lett. 66, 1190 (1995)ADSCrossRefGoogle Scholar
  136. 136.
    G.C. Cho, W. Kütt, H. Kurz, Phys. Rev. Lett. 65, 764 (1990)ADSCrossRefGoogle Scholar
  137. 137.
    T. Pfeifer, T. Dekorsy, W. Kütt, H. Kurz, Appl. Phys. A 55, 482 (1992)ADSCrossRefGoogle Scholar
  138. 138.
    Y.-C. Wen et al., Phys. Rev. B 80, 195201 (2009)ADSCrossRefGoogle Scholar
  139. 139.
    P. Babilotte et al., Appl. Phys. Lett. 97, 174103 (2010)ADSCrossRefGoogle Scholar
  140. 140.
    A. Bartels, T. Dekorsy, H. Kurz, K. Köhler, Phys. Rev. Lett. 82, 1044 (1999)ADSCrossRefGoogle Scholar
  141. 141.
    O. Matsuda et al., Phys. Rev. B 71, 115330 (2005)ADSCrossRefGoogle Scholar
  142. 142.
    E. Péronne et al., Appl. Phys. Lett. 102, 043107 (2013)ADSCrossRefGoogle Scholar
  143. 143.
    D. Lim et al., Phys. Rev. B 71, 134403 (2005)ADSCrossRefGoogle Scholar
  144. 144.
    C. v. Korff Schmising et al., Phys. Rev. B 78, 060404 (2008)ADSCrossRefGoogle Scholar
  145. 145.
    H. Wen et al., Phys. Rev. Lett. 110, 037601 (2013)ADSCrossRefGoogle Scholar
  146. 146.
    Y. Wang et al., Phys. Rev. B 88, 064307 (2013)ADSCrossRefGoogle Scholar
  147. 147.
    K. Norimatsu et al., Solid State Commun. 157, 58 (2013)ADSCrossRefGoogle Scholar
  148. 148.
    J. Flock, T. Dekorsy, O.V. Misochko, Appl. Phys. Lett. 105, 011902 (2014)ADSCrossRefGoogle Scholar
  149. 149.
    M. Weis et al., Phys. Rev. B 92, 014301 (2015)ADSCrossRefGoogle Scholar
  150. 150.
    M.V. Costache et al., Phys. Rev. Lett. 112, 086601 (2014)ADSCrossRefGoogle Scholar
  151. 151.
    D. Kim et al., Phys. Rev. Lett. 109, 166801 (2012)ADSCrossRefGoogle Scholar
  152. 152.
    A.V. Scherbakov et al., Phys. Rev. Lett. 105, 117204 (2010)ADSCrossRefGoogle Scholar
  153. 153.
    J.V. Jäger et al., Appl. Phys. Lett. 103, 032409 (2013)ADSCrossRefGoogle Scholar
  154. 154.
    A.J. Kent et al., Phys. Rev. Lett. 96, 215504 (2006)ADSCrossRefGoogle Scholar
  155. 155.
    C.L. Poyser, A.V. Akimov, R.P. Campion, A.J. Kent, Sci. Rep. 5, 8279 (2015)ADSCrossRefGoogle Scholar
  156. 156.
    A. Fainstein, N.D. Lanzillotti-Kimura, B. Jusserand, B. Perrin, Phys. Rev. Lett. 110, 037403 (2013)ADSCrossRefGoogle Scholar
  157. 157.
    I. Mahboob, K. Nishiguchi, A. Fujiwara, H. Yamaguchi, Phys. Rev. Lett. 110, 127202 (2013)ADSCrossRefGoogle Scholar
  158. 158.
    V. Gusev, P. Picart, D. Mounier, J.-M. Breteau, Opt. Commun. 204, 229 (2002)ADSCrossRefGoogle Scholar
  159. 159.
    Y. Yan, E.B. Gamble, K.A. Nelson, J. Chem. Phys. 83, 5391 (1985)ADSCrossRefGoogle Scholar
  160. 160.
    T. Kampfrath, K. Tanaka, K.A. Nelson, Nat. Photon. 7, 680 (2013)ADSCrossRefGoogle Scholar
  161. 161.
    R. Mankowsky et al., Phys. Rev. B 91, 094308 (2015)ADSCrossRefGoogle Scholar
  162. 162.
    R.J. Stoner et al., AIP Conf. Proc. 550, 468 (2001)ADSCrossRefGoogle Scholar
  163. 163.
    G.A. Antonelli, B. Perrin, B.C. Daly, D.G. Cahill, MRS Bull. 31, 607 (2006)CrossRefGoogle Scholar
  164. 164.
    J.-F. Robillard, A. Devos, I. Roch-Jeune, P.A. Mante, Phys. Rev. B 78, 064302 (2008)ADSCrossRefGoogle Scholar
  165. 165.
    V. Juvé et al., Nano Lett. 10, 1853 (2010)ADSCrossRefGoogle Scholar
  166. 166.
    A. Amziane, L. Belliard, F. Decremps, B. Perrin, Phys. Rev. B 83, 014102 (2011)ADSCrossRefGoogle Scholar
  167. 167.
    C. Mechri, P. Ruello, V. Gusev, New J. Phys. 14, 023048 (2012)ADSCrossRefGoogle Scholar
  168. 168.
    F. Hudert, A. Bartels, T. Dekorsy, K. Khler, J. Appl. Phys. 104, 123509 (2008)ADSCrossRefGoogle Scholar
  169. 169.
    A.M. Lomonosov et al., ACS Nano 6, 1410 (2012)CrossRefGoogle Scholar
  170. 170.
    C. Mechri et al., Appl. Phys. Lett. 95, 091907 (2009)ADSCrossRefGoogle Scholar
  171. 171.
    T. Dehoux, B. Audoin, J. Appl. Phys. 112, 124702 (2012)ADSCrossRefGoogle Scholar
  172. 172.
    C. Thomsen, H. Maris, J. Tauc, Thin Solid Films 154, 217 (1987)ADSCrossRefGoogle Scholar
  173. 173.
    M. Hettich et al., Appl. Phys. Lett. 98, 261908 (2011)ADSCrossRefGoogle Scholar
  174. 174.
    M.D. Losego et al., Nat. Mater. 11, 502 (2012)ADSCrossRefGoogle Scholar
  175. 175.
    A. Ayouch et al., ACS Nano 6, 10614 (2012)CrossRefGoogle Scholar
  176. 176.
    I. Lisiecki et al., Nano Lett. 13, 4914 (2013)ADSCrossRefGoogle Scholar
  177. 177.
    A. Crut, P. Maioli, N. Del Fatti, F. Vallée, Phys. Rep. 549, 1 (2015)ADSMathSciNetCrossRefGoogle Scholar
  178. 178.
    F. Hudert et al., Phys. Rev. B 79, 201307 (2009)ADSCrossRefGoogle Scholar
  179. 179.
    S. Neogi, D. Donadio, Eur. Phys. J. B 88, 73 (2015)ADSCrossRefGoogle Scholar
  180. 180.
    G. Rozas et al., Phys. Rev. Lett. 102, 015502 (2009)ADSCrossRefGoogle Scholar
  181. 181.
    G.R.L.D. Landau, Phys. Z. Sowjet. 11, 18 (1937)MATHGoogle Scholar
  182. 182.
    A. Akhieser, J. Phys. USSR 1, 277 (1939)Google Scholar
  183. 183.
    E. Chávez-Angel et al., Semicond. Sci. Technol. 29, 124010 (2014)ADSCrossRefGoogle Scholar
  184. 184.
    J.M. Ziman, Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford University Press, Oxford, 1960)Google Scholar
  185. 185.
    A.D. O’Connell et al., Nature 464, 697 (2010)ADSCrossRefGoogle Scholar
  186. 186.
    M. Poot, H.S. van der Zant, Phys. Rep. 511, 273 (2012)ADSCrossRefGoogle Scholar
  187. 187.
    G. Kurizki et al., Proc. Natl. Acad. Sci. 112, 3866 (2015)ADSCrossRefGoogle Scholar
  188. 188.
    A.N. Cleland, Foundations of Nanomechanics (Springer-Verlag, Berlin, Heidelberg, New York, 2003)Google Scholar
  189. 189.
    A. Castellanos-Gomez, V. Singh, H.S.J. van der Zant, G.A. Steele, Annalen der Physik 527, 27 (2015)ADSCrossRefGoogle Scholar
  190. 190.
    W. Weaver, S.P. Timoshenko, D.H. Young, Vibration Problems in Engineering, 5th edn. (John Wiley & Sons, Weinheim, 1990)Google Scholar
  191. 191.
    K.L. Ekinci, M.L. Roukes, Rev. Sci. Instrum. 76, 061101 (2005)ADSCrossRefGoogle Scholar
  192. 192.
    K. Ekinci, Small 1, 786 (2005)CrossRefGoogle Scholar
  193. 193.
    D.V. Thourhout, J. Roels, Nat. Photon. 4, 211 (2010)ADSCrossRefGoogle Scholar
  194. 194.
    M. Imboden, P. Mohanty, Phys. Rep. 534, 89 (2014)ADSMathSciNetCrossRefGoogle Scholar
  195. 195.
    R. Lifshitz, M.C. Cross, in Review of Nonlinear Dynamics and Complexity, edited by H.G. Schuster (Wiley, 2008), Vol. 1, p. 1Google Scholar
  196. 196.
    Q.P. Unterreithmeier, E.M. Weig, J.P. Kotthaus, Nature 458, 1001 (2009)ADSCrossRefGoogle Scholar
  197. 197.
    S.S. Verbridge et al., J. Appl. Phys. 99, 124304 (2006)ADSCrossRefGoogle Scholar
  198. 198.
    Q.P. Unterreithmeier, T. Faust, J.P. Kotthaus, Phys. Rev. Lett. 105, 027205 (2010)ADSCrossRefGoogle Scholar
  199. 199.
    P.-L. Yu et al., Phys. Rev. Lett. 108, 083603 (2012)ADSCrossRefGoogle Scholar
  200. 200.
    P. Ovartchaiyapong et al., Appl. Phys. Lett. 101, 163505 (2012)ADSCrossRefGoogle Scholar
  201. 201.
    G.D. Cole et al., Appl. Phys. Lett. 104, 201908 (2014)ADSCrossRefGoogle Scholar
  202. 202.
    J. Chan et al., Appl. Phys. Lett. 101, 081115 (2012)ADSCrossRefGoogle Scholar
  203. 203.
    P.-L. Yu et al., Appl. Phys. Lett. 104, 023510 (2014)ADSCrossRefGoogle Scholar
  204. 204.
    D.T. Nguyen et al., Appl. Phys. Lett. 103, 241112 (2013)ADSCrossRefGoogle Scholar
  205. 205.
    T. Faust et al., Phys. Rev. Lett. 109, 037205 (2012)ADSCrossRefGoogle Scholar
  206. 206.
    T. Faust et al., Nat. Phys. 9, 485488 (2013)CrossRefGoogle Scholar
  207. 207.
    H. Okamoto et al., Nat. Phys. 9, 480 (2013)CrossRefGoogle Scholar
  208. 208.
    Y. Zhang et al., Phys. Rev. Lett. 113, 255502 (2014)ADSCrossRefGoogle Scholar
  209. 209.
    B.H. Schneider et al., Nat. Commun. 5, 5819 (2014)ADSCrossRefGoogle Scholar
  210. 210.
    R.B. Karabalin, M.C. Cross, M.L. Roukes, Phys. Rev. B 79, 165309 (2009)ADSCrossRefGoogle Scholar
  211. 211.
    H.J.R. Westra et al., Phys. Rev. Lett. 105, 117205 (2010)ADSCrossRefGoogle Scholar
  212. 212.
    I. Mahboob et al., Appl. Phys. Lett. 103, 153105 (2013)ADSCrossRefGoogle Scholar
  213. 213.
    M.H. Matheny et al., Nano Lett. 13, 1622 (2013)Google Scholar
  214. 214.
    Q.P. Unterreithmeier, T. Faust, J.P. Kotthaus, Phys. Rev. B 81, 241405 (2010)ADSCrossRefGoogle Scholar
  215. 215.
    A. Eichler et al., Nat. Nanotechnol. 6, 339 (2011)ADSCrossRefGoogle Scholar
  216. 216.
    R.B. Karabalin et al., Phys. Rev. Lett. 106, 094102 (2011)ADSCrossRefGoogle Scholar
  217. 217.
    M.H. Matheny et al., Phys. Rev. Lett. 112, 014101 (2014)ADSCrossRefGoogle Scholar
  218. 218.
    C.L. Degen et al., Proc. Natl. Acad. Sci. 106, 1313 (2009)ADSCrossRefGoogle Scholar
  219. 219.
    M. Poggio et al., Phys. Rev. Lett. 102, 087604 (2009)ADSCrossRefGoogle Scholar
  220. 220.
    J. Moser et al., Nat. Nanotechnol. 8, 493 (2013)ADSCrossRefGoogle Scholar
  221. 221.
    J. Chaste et al., Nat. Nanotechnol. 7, 301 (2012)ADSCrossRefGoogle Scholar
  222. 222.
    J. Bouchaud, IHS Technology, 2012, https://technology.ihs.com
  223. 223.
    J. Arlett, E. Myers, M. Roukes, Nat. Nanotechnol. 6, 203 (2011)ADSCrossRefGoogle Scholar
  224. 224.
    K. Eom, H.S. Park, D.S. Yoon, T. Kwon, Phys. Rep. 503, 115 (2011)ADSCrossRefGoogle Scholar
  225. 225.
    L.Y. Gorelik et al., Phys. Rev. Lett. 80, 4526 (1998)ADSCrossRefGoogle Scholar
  226. 226.
    R.I. Shekhter et al., Nanoelectromech. Syst. 1, 1 (2013)ADSCrossRefGoogle Scholar
  227. 227.
    G.A. Steele et al., Science 325, 1103 (2009)ADSCrossRefGoogle Scholar
  228. 228.
    I. Yeo et al., Nat. Nanotechnol. 9, 106 (2014)ADSCrossRefGoogle Scholar
  229. 229.
    P. Ovartchaiyapong, K.W. Lee, B.A. Myers, A.C.B. Jayich, Nat. Commun. 5, 4429 (2014)ADSCrossRefGoogle Scholar
  230. 230.
    A. Barfuss et al., Nat. Phys. 11, 820 (2015)CrossRefGoogle Scholar
  231. 231.
    T.J. Kippenberg, K.J. Vahala, Opt. Express 15, 17172 (2007)ADSCrossRefGoogle Scholar
  232. 232.
    T.J. Kippenberg, K.J. Vahala, Science 321, 1172 (2008)ADSCrossRefGoogle Scholar
  233. 233.
    I. Favero, K. Karrai, Nat. Photon. 3, 201 (2009)ADSCrossRefGoogle Scholar
  234. 234.
    Cavity Optomechanics: Nano- and Micromechanical Resonators Interacting with Light, edited by M. Aspelmeyer, T.J. Kippenberg, F. Marquardt (Springer-Verlag, Berlin, Heidelberg, 2014)Google Scholar
  235. 235.
    M. Eichenfield et al., Nature 462, 78 (2009)ADSCrossRefGoogle Scholar
  236. 236.
    J. Chan et al., Nature 478, 8992 (2011)CrossRefGoogle Scholar
  237. 237.
    A.H. Safavi-Naeini et al., Phys. Rev. Lett. 108, 033602 (2012)ADSCrossRefGoogle Scholar
  238. 238.
    M. Maldovan, E.L. Thomas, Appl. Phys. Lett. 88, 251907 (2006)ADSCrossRefGoogle Scholar
  239. 239.
    J. Gomis-Bresco et al., Nat. Commun. 5, 4452 (2014)ADSCrossRefGoogle Scholar
  240. 240.
    A.H. Safavi-Naeini et al., Phys. Rev. Lett. 112, 153603 (2014)ADSCrossRefGoogle Scholar
  241. 241.
    G. Heinrich et al., Phys. Rev. Lett. 107, 043603 (2011)ADSCrossRefGoogle Scholar
  242. 242.
    V. Peano, C. Brendel, M. Schmidt, F. Marquardt, Phys. Rev. X 5, 031011 (2015)Google Scholar
  243. 243.
    O. Romero-Isart et al., Phys. Rev. A 83, 013803 (2011)ADSCrossRefGoogle Scholar
  244. 244.
    N. Kiesel et al., Proc. Natl. Acad. Sci. 110, 14180 (2013)ADSCrossRefGoogle Scholar
  245. 245.
    P. Mestres et al., Appl. Phys. Lett. 107, 151102 (2015)ADSCrossRefGoogle Scholar
  246. 246.
    J. Millen et al., Phys. Rev. Lett. 114, 123602 (2015)ADSCrossRefGoogle Scholar
  247. 247.
    J.D. Teufel, J.W. Harlow, C.A. Regal, K.W. Lehnert, Phys. Rev. Lett. 101, 197203 (2008)ADSCrossRefGoogle Scholar
  248. 248.
    J.D. Teufel et al., Nature 471, 204208 (2011)CrossRefGoogle Scholar
  249. 249.
    F. Lecocq, J.D. Teufel, J. Aumentado, R.W. Simmonds, Nat. Phys. 11, 635639 (2015)CrossRefGoogle Scholar
  250. 250.
    V. Singh et al., Nat. Nanotechnol. 9, 820 (2014)ADSCrossRefGoogle Scholar
  251. 251.
    T.J. Kippenberg et al., Phys. Rev. Lett. 95, 033901 (2005)ADSCrossRefGoogle Scholar
  252. 252.
    C. Metzger et al., Phys. Rev. Lett. 101, 133903 (2008)ADSCrossRefGoogle Scholar
  253. 253.
    C.H. Metzger, K. Karrai, Nature 432, 1002 (2004)ADSCrossRefGoogle Scholar
  254. 254.
    O. Arcizet et al., Nature 444, 71 (2006)ADSCrossRefGoogle Scholar
  255. 255.
    D. Kleckner, D. Bouwmeester, Nature 444, 75 (2006)ADSCrossRefGoogle Scholar
  256. 256.
    S. Gigan et al., Nature 444, 67 (2006)ADSCrossRefGoogle Scholar
  257. 257.
    A. Schliesser et al., Phys. Rev. Lett. 97, 243905 (2006)ADSCrossRefGoogle Scholar
  258. 258.
    F. Marquardt, J.P. Chen, A.A. Clerk, S.M. Girvin, Phys. Rev. Lett. 99, 093902 (2007)ADSCrossRefGoogle Scholar
  259. 259.
    I. Wilson-Rae, N. Nooshi, W. Zwerger, T.J. Kippenberg, Phys. Rev. Lett. 99, 093901 (2007)ADSCrossRefGoogle Scholar
  260. 260.
    J.D. Teufel et al., Nature 475, 359 (2011)ADSCrossRefGoogle Scholar
  261. 261.
    M. Aspelmeyer, S. Gröblacher, K. Hammerer, N. Kiesel, J. Opt. Soc. Am. B 27, A189 (2010)ADSCrossRefGoogle Scholar
  262. 262.
    P. Meystre, Annalen der Physik 525, 215 (2013)ADSMATHCrossRefGoogle Scholar
  263. 263.
    T.A. Palomaki et al., Science 342, 710 (2013)ADSCrossRefGoogle Scholar
  264. 264.
    T.P. Purdy et al., Science 339, 801 (2013)ADSCrossRefGoogle Scholar
  265. 265.
    E.E. Wollman et al., Science 349, 952 (2015)ADSMathSciNetCrossRefGoogle Scholar
  266. 266.
    S. Weis, R. Riviere, S. Deleglise, E. Gavartin, O. Arcizet, A. Schliesser, T.J. Kippenberg, Science 330, 1520 (2010)ADSCrossRefGoogle Scholar
  267. 267.
    J.D. Thompson et al., Nature 452, 72 (2008)ADSCrossRefGoogle Scholar
  268. 268.
    J.C. Sankey et al., Nat. Phys. 6, 707 (2010)CrossRefGoogle Scholar
  269. 269.
    S. Gröblacher, K. Hammerer, M.R. Vanner, M. Aspelmeyer, Nature 460, 724 (2009)ADSCrossRefGoogle Scholar
  270. 270.
    A. Nunnenkamp, K. Börkje, S.M. Girvin, Phys. Rev. Lett. 107, 063602 (2011)ADSCrossRefGoogle Scholar
  271. 271.
    D.J. Wilson et al., Nature 524, 325329 (2015)CrossRefGoogle Scholar
  272. 272.
    M. Yuan, V. Singh, Y.M. Blanter, G.A. Steele, Nat. Commun. 6, 9491 (2015)Google Scholar
  273. 273.
    A. Pilan-Zanoni et al., arXiv:1508.01032 (2015)
  274. 274.
    A.G. Krause et al., Nat. Photon. 6, 768 (2012)ADSCrossRefGoogle Scholar
  275. 275.
    E. Gil-Santos et al., Nat. Nanotechnol. 10, 810816 (2015)ADSCrossRefGoogle Scholar
  276. 276.
    T.A. Palomaki et al., Nature 495, 210214 (2013)CrossRefGoogle Scholar
  277. 277.
    J. Bochmann, A. Vainsencher, D.D. Awschalom, A.N. Cleland, Nat. Phys. 9, 712716 (2013)CrossRefGoogle Scholar
  278. 278.
    T. Bagci et al., Nature 507, 8185 (2014)CrossRefGoogle Scholar
  279. 279.
    C. Campbell, IEEE Proc. 77, 1453 (1989)ADSCrossRefGoogle Scholar
  280. 280.
    R. Aigner, in 2003 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, 2003. Digest of Papers (IEEE, Picataway, 2003), pp. 157–161Google Scholar
  281. 281.
    M.J. Hoskins, H. Morko, B.J. Hunsinger, Appl. Phys. Lett. 41, 332 (1982)ADSCrossRefGoogle Scholar
  282. 282.
    S. Büyükköse et al., Nanotechnol. 25, 135204 (2014)CrossRefGoogle Scholar
  283. 283.
    D.M. Moss et al., Phys. Rev. Lett. 106, 066602 (2011)ADSCrossRefGoogle Scholar
  284. 284.
    M.V. Gustafsson et al., Science 346, 207 (2014)ADSCrossRefGoogle Scholar
  285. 285.
    A. Sologubenko, T. Lorenz, H. Ott, A. Freimuth, J. Low Temp. Phys. 147, 387 (2007)ADSCrossRefGoogle Scholar
  286. 286.
    G.E. Bauer, E. Saitoh, B.J. van Wees, Nat. Mater. 11, 391 (2012)ADSCrossRefGoogle Scholar
  287. 287.
    E. Pickwell-MacPherson, V.P. Wallace, Photodiagnosis and Photodynamic Therapy 6, 128 (2009)CrossRefGoogle Scholar
  288. 288.
    P. Knobloch et al., Phys. Med. Biol. 47, 3875 (2002)CrossRefGoogle Scholar
  289. 289.
    X.-C. Zhang, Phys. Med. Biol. 47, 3667 (2002)CrossRefGoogle Scholar
  290. 290.
    Z. Popovic, E. Grossman, IEEE Trans. Terahertz Science and Technology 1, 133 (2011)ADSCrossRefGoogle Scholar
  291. 291.
    B.C. Daly et al., Appl. Phys. Lett. 84, 5180 (2004)ADSCrossRefGoogle Scholar
  292. 292.
    R. Li Voti, C. Sibilia, M. Bertolotti, Int. J. Thermophys. 26, 1833 (2005)ADSCrossRefGoogle Scholar
  293. 293.
    S.M. Nikitin et al., Sci. Rep. 5, 9352 (2015)ADSCrossRefGoogle Scholar
  294. 294.
    M. Mohseni, Y. Omar, G.S. Engel, M.B. Plenio, Quantum Effects in Biology (Cambridge University Press, New York, 2014)Google Scholar
  295. 295.
    S. Huelga, M. Plenio, Contemp. Phys. 54, 181 (2013)CrossRefGoogle Scholar
  296. 296.
    E. Romero et al., Nat. Phys. 10, 676 (2014)CrossRefGoogle Scholar
  297. 297.
    F.J. DiSalvo, Science 285, 703 (1999)CrossRefGoogle Scholar
  298. 298.
    A. Majumdar, Science 303, 777 (2004)CrossRefGoogle Scholar
  299. 299.
    B. Poudel et al., Science 320, 634 (2008)ADSCrossRefGoogle Scholar
  300. 300.
    L.-D. Zhao, V.P. Dravid, M.G. Kanatzidis, Energy Environm. Sci. 7, 251 (2014)CrossRefGoogle Scholar
  301. 301.
    E. Chávez-Ángel et al., Appl. Phys. Lett. Mater. 2, 012113 (2014)Google Scholar
  302. 302.
    J. Cuffe et al., Phys. Rev. Lett. 110, 095503 (2013)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Sebastian Volz
    • 1
  • Jose Ordonez-Miranda
    • 1
  • Andrey Shchepetov
    • 2
  • Mika Prunnila
    • 2
  • Jouni Ahopelto
    • 2
  • Thomas Pezeril
    • 3
  • Gwenaelle Vaudel
    • 3
  • Vitaly Gusev
    • 4
  • Pascal Ruello
    • 3
  • Eva M. Weig
    • 5
  • Martin Schubert
    • 5
  • Mike Hettich
    • 5
  • Martin Grossman
    • 5
  • Thomas Dekorsy
    • 5
  • Francesc Alzina
    • 6
  • Bartlomiej Graczykowski
    • 6
  • Emigdio Chavez-Angel
    • 6
  • J. Sebastian Reparaz
    • 6
  • Markus R. Wagner
    • 6
  • Clivia M. Sotomayor-Torres
    • 6
    • 7
  • Shiyun Xiong
    • 8
  • Sanghamitra Neogi
    • 8
    • 9
  • Davide Donadio
    • 8
    • 10
    • 11
    • 12
  1. 1.Laboratoire d’Energétique Moléculaire et Macroscopique, Combustion, CNRSChatenay-MalabryFrance
  2. 2.VTT Technical Research Centre of Finland, P.O. Box 1000, 02044 VTTEspooFinland
  3. 3.Institut des Molécules et Matériaux du Mans, UMR CNRS 6283, Université du MaineLe MansFrance
  4. 4.Laboratoire d’Acoustique, UMR CNRS 6613, Université du MaineLe MansFrance
  5. 5.Department of PhysicsUniversity of Konstanz, Universitätsstr. 10KonstanzGermany
  6. 6.Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and TechnologyBarcelonaSpain
  7. 7.ICREA, Catalan Institute for Research and Advanced StudiesBarcelonaSpain
  8. 8.Max Planck Institute for Polymer ResearchMainzGermany
  9. 9.Department of Aerospace Engineering SciencesUniversity of Colorado BoulderBoulderUSA
  10. 10.Department of ChemistryUniversity of California DavisOne Shields Ave. DavisUSA
  11. 11.Ikerbasque, Basque Foundation for ScienceBilbaoSpain
  12. 12.Donostia International Physics Center, Paseo M. de Lardizabal 4San SebastianSpain

Personalised recommendations