Advertisement

Multifractal analysis of electronic states on random Voronoi-Delaunay lattices

  • Martin PuschmannEmail author
  • Philipp Cain
  • Michael Schreiber
  • Thomas Vojta
Regular Article

Abstract

We consider the transport of non-interacting electrons on two- and three-dimensional random Voronoi-Delaunay lattices. It was recently shown that these topologically disordered lattices feature strong disorder anticorrelations between the coordination numbers that qualitatively change the properties of continuous and first-order phase transitions. To determine whether or not these unusual features also influence Anderson localization, we study the electronic wave functions by multifractal analysis and finite-size scaling. We observe only localized states for all energies in the two-dimensional system. In three dimensions, we find two Anderson transitions between localized and extended states very close to the band edges. The critical exponent of the localization length is about 1.6. All these results agree with the usual orthogonal universality class. Additional generic energetic randomness introduced via random potentials does not lead to qualitative changes but allows us to obtain a phase diagram by varying the strength of these potentials.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    P.W. Anderson, Phys. Rev. 109, 1492 (1958)CrossRefADSGoogle Scholar
  2. 2.
    P.A. Lee, T.V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985)CrossRefADSGoogle Scholar
  3. 3.
    B. Kramer, A. MacKinnon, Rep. Prog. Phys. 56, 1469 (1993)CrossRefADSGoogle Scholar
  4. 4.
    F. Evers, A.D. Mirlin, Rev. Mod. Phys. 80, 1355 (2008)CrossRefADSGoogle Scholar
  5. 5.
    E.P. Wigner, Ann. Math. 53, 36 (1951)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    F.J. Dyson, J. Math. Phys. 3, 140 (1962)MathSciNetCrossRefADSzbMATHGoogle Scholar
  7. 7.
    M.Y. Azbel, Sol. State Commun. 37, 789 (1981)CrossRefADSGoogle Scholar
  8. 8.
    M.Y. Azbel, Phys. Rev. B 28, 4106 (1983)CrossRefADSGoogle Scholar
  9. 9.
    D.H. Dunlap, H.L. Wu, P.W. Phillips, Phys. Rev. Lett. 65, 88 (1990)CrossRefADSGoogle Scholar
  10. 10.
    F. Izrailev, A. Krokhin, N. Makarov, Phys. Rep. 512, 125 (2012)MathSciNetCrossRefADSGoogle Scholar
  11. 11.
    W. Janke, R. Villanova, Phys. Lett. A 209, 179 (1995)CrossRefADSGoogle Scholar
  12. 12.
    F. Lima, U. Costa, M. Almeida, J. Andrade Jr, Eur. Phys. J. B 17, 111 (2000)Google Scholar
  13. 13.
    W. Janke, R. Villanova, Phys. Rev. B 66, 134208 (2002)CrossRefADSGoogle Scholar
  14. 14.
    F. Lima, U. Costa, R.C. Filho, Physica A 387, 1545 (2008)CrossRefADSGoogle Scholar
  15. 15.
    M.M. de Oliveira, S.G. Alves, S.C. Ferreira, R. Dickman, Phys. Rev. E 78, 031133 (2008)CrossRefADSGoogle Scholar
  16. 16.
    H. Barghathi, T. Vojta, Phys. Rev. Lett. 113, 120602 (2014)CrossRefADSGoogle Scholar
  17. 17.
    A.B. Harris, J. Phys. C 7, 1671 (1974)CrossRefADSGoogle Scholar
  18. 18.
    Y. Imry, S. Ma, Phys. Rev. Lett. 35, 1399 (1975)CrossRefADSGoogle Scholar
  19. 19.
    Y. Imry, M. Wortis, Phys. Rev. B 19, 3580 (1979)CrossRefADSGoogle Scholar
  20. 20.
    K. Hui, A.N. Berker, Phys. Rev. Lett. 62, 2507 (1989)CrossRefADSGoogle Scholar
  21. 21.
    M. Aizenman, J. Wehr, Phys. Rev. Lett. 62, 2503 (1989)MathSciNetCrossRefADSGoogle Scholar
  22. 22.
    U. Grimm, R.A. Römer, G. Schliecker, Ann. Phys. (Leipzig) 7, 389 (1998)CrossRefADSGoogle Scholar
  23. 23.
    G.L. Caer, J. Phys. A 24, 1307 (1991)MathSciNetCrossRefADSzbMATHGoogle Scholar
  24. 24.
    G.L. Caer, J. Phys. A 24, 4655 (1991)MathSciNetCrossRefADSGoogle Scholar
  25. 25.
    A. Okabe, B. Boots, K. Sugihara, S. Chiu, Spatial Tessellations: Concepts and Applications of Voronoi Diagrams (Wiley, Chichester, 2000)Google Scholar
  26. 26.
    J.L. Meijering, Philips Res. Rep. 8, 270 (1953)zbMATHGoogle Scholar
  27. 27.
    M. Bollhöfer, Y. Notay, Tech. Rep. GANMN 06-01, Université Libre de Bruxelles (2006), http://homepages.ulb.ac.be/˜jadamilu/
  28. 28.
    K. Slevin, T. Ohtsuki, Phys. Rev. Lett. 82, 382 (1999)CrossRefADSGoogle Scholar
  29. 29.
    T. Ohtsuki, K. Slevin, T. Kawarabayashi, Ann. Phys. (Leipzig) 8, 655 (1999)CrossRefADSzbMATHGoogle Scholar
  30. 30.
    A. Rodriguez, L.J. Vasquez, K. Slevin, R.A. Römer, Phys. Rev. B 84, 134209 (2011)CrossRefADSGoogle Scholar
  31. 31.
    C. Castellani, L. Peliti, J. Phys. A 19, L429 (1986)CrossRefADSGoogle Scholar
  32. 32.
    L.J. Vasquez, A. Rodriguez, R.A. Römer, Phys. Rev. B 78, 195106 (2008)CrossRefADSGoogle Scholar
  33. 33.
    A. Rodriguez, L.J. Vasquez, R.A. Römer, Phys. Rev. B 78, 195107 (2008)CrossRefADSGoogle Scholar
  34. 34.
    M. Schreiber, H. Grussbach, Phys. Rev. Lett. 67, 607 (1991)CrossRefADSGoogle Scholar
  35. 35.
    S. Thiem, M. Schreiber, Eur. Phys. J. B 86, 48 (2013)MathSciNetCrossRefADSGoogle Scholar
  36. 36.
    J. Stein, H.J. Stöckmann, Phys. Rev. Lett. 68, 2867 (1992)CrossRefADSGoogle Scholar
  37. 37.
    K. Slevin, T. Ohtsuki, New J. Phys. 16, 015012 (2014)CrossRefADSGoogle Scholar
  38. 38.
    M. de Berg, O. Cheong, M. van Kreveld, M. Overmars, Computational Geometry: Algorithms and Applications (Springer, Berlin, 2008)Google Scholar
  39. 39.
    M. Tanemura, T. Ogawa, N. Ogita, J. Comput. Phys. 51, 191 (1983)MathSciNetCrossRefADSzbMATHGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Martin Puschmann
    • 1
    Email author
  • Philipp Cain
    • 1
  • Michael Schreiber
    • 1
  • Thomas Vojta
    • 2
  1. 1.Institute of Physics, Technische Universität ChemnitzChemnitzGermany
  2. 2.Department of PhysicsMissouri University of Science and TechnologyRollaUSA

Personalised recommendations