Modern temporal network theory: a colloquium

  • Petter HolmeEmail author
Part of the following topical collections:
  1. Topical issue: Temporal Network Theory and Applications


The power of any kind of network approach lies in the ability to simplify a complex system so that one can better understand its function as a whole. Sometimes it is beneficial, however, to include more information than in a simple graph of only nodes and links. Adding information about times of interactions can make predictions and mechanistic understanding more accurate. The drawback, however, is that there are not so many methods available, partly because temporal networks is a relatively young field, partly because it is more difficult to develop such methods compared to for static networks. In this colloquium, we review the methods to analyze and model temporal networks and processes taking place on them, focusing mainly on the last three years. This includes the spreading of infectious disease, opinions, rumors, in social networks; information packets in computer networks; various types of signaling in biology, and more. We also discuss future directions.


Static Network Link Prediction Temporal Network Reachability Graph Interevent Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M.E.J. Newman, Networks: An Introduction (Oxford University Press, Oxford, 2010)Google Scholar
  2. 2.
    A.L. Barabási, Network Science (Cambridge University Press, Cambridge, 2015)Google Scholar
  3. 3.
    S. Wasserman, K. Faust, Social network analysis: Methods and applications (Cambridge University Press, Cambridge, 1994)Google Scholar
  4. 4.
    L. Lamport, Commun. ACM 21, 558 (1978)zbMATHCrossRefGoogle Scholar
  5. 5.
    G.B. Mertzios, O. Michail, I. Chatzigiannakis, P.G. Spirakis, in Automata, Languages, and Programming, Lect. Notes Comput. Sci., edited by F.V. Fomin, R. Freivalds, M. Kwiatkowska, D. Peleg (Springer, Berlin, Heidelberg, 2013), Vol. 7966, pp. 657–668Google Scholar
  6. 6.
    O. Michail, P.G. Spirakis, in Mathematical Foundations of Computer Science 2014, Lect. Notes Comput. Sci., edited by E. Csuhaj-Varjú, M. Dietzfelbinger, Z. Ésik (Springer Berlin Heidelberg, 2014), Vol. 8635Google Scholar
  7. 7.
    S. Huang, A.W.C. Fu, R. Liu, Minimum Spanning Trees in Temporal Graphs, in Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data SIGMOD ’15 (ACM, New York, 2015), pp. 419–430Google Scholar
  8. 8.
    M. Pósfai, P. Hövel, arXiv:1312.7595 (2013)Google Scholar
  9. 9.
    S. Chen, A. Ilany, B.J. White, M.W. Sanderson, C. Lanzas, PLoS One 10, e0129253 (2015)CrossRefGoogle Scholar
  10. 10.
    J.R. Clough, J. Gollings, T.V. Loach, T.S. Evans, J. Complex Netw. 3, 189 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    P. Holme, J. Saramäki, Phys. Rep. 519, 97 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    T. Gross, B. Blasius, J. R. Soc. Interface 5, 259 (2008)CrossRefGoogle Scholar
  13. 13.
    V.M. Eguíluz, M.G. Zimmerman, C.J. Cela-Conde, M. San Miguel, Am. J. Sociology 110, 977 (2014)CrossRefGoogle Scholar
  14. 14.
    L. Wardil, C. Hauert, Sci. Rep. 4, 05725 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    A. Barrat, C. Cattuto, in Temporal Networks, edited by P. Holme, J. Saramäki (Springer, Berlin, 2013), pp. 191–216Google Scholar
  16. 16.
    A. Barrat et al., Eur. Phys. J. Special Topics 222, 1295 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    M. Kibanov, M. Atzmueller, C. Scholz, G. Stumme, Sci. China Inf. Sci. 57, 1 (2014)CrossRefGoogle Scholar
  18. 18.
    C. Cattuto, M. Quaggiotto, A. Panisson, A. Averbuch, Time-varying Social Networks in a Graph Database: A Neo4J Use Case, in First International Workshop on Graph Data Management Experiences and Systems GRADES ’13 (ACM, New York, USA, 2013), pp. 11:1–11:6Google Scholar
  19. 19.
    A. Panisson, L. Gauvin, A. Barrat, C. Cattuto, Fingerprinting temporal networks of close-range human proximity, in 2013 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), pp. 261–266Google Scholar
  20. 20.
    W. van den Broeck, M. Quaggiotto, L. Isella, A. Barrat, C. Cattuto, Leonardo 45, 201 (2012)Google Scholar
  21. 21.
    L. Isella, J. Stehlé, A. Barrat, C. Cattuto, J.F. Pinton, W. Van den Broeck, J. Theor. Biol. 271, 166 (2011)CrossRefGoogle Scholar
  22. 22.
    P. Vanhems, A. Barrat, C. Cattuto, J.F. Pinton, N. Khanafer, C. Régis, B.a. Kim, B. Comte, N. Voirin, PLoS One 8, e73970 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    N. Voirin et al., Infect. Cont. Hosp. Ep. 36, 254 (2015)CrossRefGoogle Scholar
  24. 24.
    T. Takaguchi, M. Nakamura, N. Sato, K. Yano, N. Masuda, Phys. Rev. X 1, 011008 (2011)Google Scholar
  25. 25.
    M. Salathé, M. Kazandjieva, J.W. Lee, P. Levis, M.W. Feldman, J.H. Jones, Proc. Natl. Acad. Sci. USA 107, 22020 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    D.J.A. Toth, M. Leecaster, W.B.P. Pettey, A.V. Gundlapalli, H. Gao, J.J. Rainey, A. Uzicanin, M.H. Samore, J. R. Soc. Interface 12, 20150279 (2015)CrossRefGoogle Scholar
  27. 27.
    T. Hornbeck, D. Naylor, A.M. Segre, G. Thomas, T. Herman, P.M. Polgreen, J. Infect. Dis. 206, 1549 (2012)CrossRefGoogle Scholar
  28. 28.
    A. Stopczynski, V. Sekara, P. Sapiezynski, A. Cuttone, M.M. Madsen, J.E. Larsen, S. Lehmann, PLoS One 9, e95978 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    V. Sekara, A. Stopczynski, S. Lehmann, arXiv:1506.04704 (2015)Google Scholar
  30. 30.
    A. Stopczynski, P. Sapiezynski, A. Pentland, S. Lehmann, arXiv:1507.01484 (2015)Google Scholar
  31. 31.
    R. Pfitzner, I. Scholtes, A. Garas, C.J. Tessone, F. Schweitzer, Phys. Rev. Lett. 110, 198701 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    I. Scholtes, N. Wider, R. Pfitzner, A. Garas, C.J. Tessone, F. Schweitzer, Nat. Commun. 4, 5024 (2014)CrossRefGoogle Scholar
  33. 33.
    Y.Q. Zhang, X. Li, J. Xu, A. Vasilakos, IEEE Trans. Syst. Man Cybern. Part A Syst. Humans 45, 214 (2015)CrossRefGoogle Scholar
  34. 34.
    Y. Zhang, L. Wang, Y.Q. Zhang, X. Li, Europhys. Lett. 98, 68002 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    Y.Q. Zhang, X. Li, Chaos 23, 013131 (2013)MathSciNetADSCrossRefGoogle Scholar
  36. 36.
    E. Yoneki, P. Hui, J. Crowcroft, in Bio-Inspired Computing and Communication, Lect. Notes Comput. Sci., edited by P. Liò, E. Yoneki, J. Crowcroft, D.C. Verma (Springer, Berlin, Heidelberg, 2008), Vol. 5151, pp. 116–132Google Scholar
  37. 37.
    L. Sun, K.W. Axhausen, D.H. Lee, X. Huang, Proc. Natl. Acad. Sci. USA 110, 13774 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    Y. Kim, K. Lee, N. Shroff, IEEE Trans. Mob. Comput. PP, 1 (2015)Google Scholar
  39. 39.
    F. Liljeros, J. Giesecke, P. Holme, Math. Popul. Stud. 14, 269 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  40. 40.
    A.S. Walker et al., PLoS Med. 9, e1001172 (2012)CrossRefGoogle Scholar
  41. 41.
    T. Donker, J. Wallinga, H. Grundmann, PLoS Comput. Biol. 6, e1000715 (2010)ADSCrossRefGoogle Scholar
  42. 42.
    J.J. Potterat, S.Q. Muth, R.B. Rothenberg, H. Zimmerman-Rogers, D.L. Green, J.E. Taylor, M.S. Bonney, H.A. White, Sex. Transm. Infect. 78, i152 (2002)CrossRefGoogle Scholar
  43. 43.
    S. Haraldsdottir, S. Gupta, R.M. Anderson, J. Acquir. Immune Defic. Syndr. 5, 374 (1992)Google Scholar
  44. 44.
    L.E.C. Rocha, F. Liljeros, P. Holme, Proc. Natl. Acad. Sci. USA 107, 5706 (2010)zbMATHADSCrossRefGoogle Scholar
  45. 45.
    L.E.C. Rocha, F. Liljeros, P. Holme, PLoS Comput. Biol. 7, 1001109 (2011)ADSCrossRefGoogle Scholar
  46. 46.
    M.C. Gates, M.E.J. Woolhouse, Epidemics 12, 11 (2015)CrossRefGoogle Scholar
  47. 47.
    M. Génois, C.L. Vestergaard, C. Cattuto, A. Barrat, Network Science (2014), DOI: 10.1017/nws.2015.10, arXiv:1409.7017
  48. 48.
    E. Valdano, C. Poletto, A. Giovannini, D. Palma, L. Savini, V. Colizza, PLoS Comput. Biol. 11, e1004152 (2015)ADSCrossRefGoogle Scholar
  49. 49.
    M. Konschake, H.H.K. Lentz, F.J. Conraths, P. Hövel, T. Selhorst, PLoS One 8, e55223 (2013)ADSCrossRefGoogle Scholar
  50. 50.
    M. Lahiri, T.Y. Berger-Wolf, Structure prediction in temporal networks using frequent subgraphs, in IEEE Symposium on Computational Intelligence and Data Mining, 2007, pp. 35–42Google Scholar
  51. 51.
    R. Sulo, T. Berger-Wolf, R. Grossman, Meaningful Selection of Temporal Resolution for Dynamic Networks, in Proceedings of the Eighth Workshop on Mining and Learning with Graphs (MGL), 2010, pp. 127–136Google Scholar
  52. 52.
    M.C. Crofoot, D.I. Rubenstein, A.S. Maiya, T.Y. Berger-Wolf, Am. J. Primatol. 73, 821 (2011)CrossRefGoogle Scholar
  53. 53.
    D. Charbonneau, B. Blonder, A. Dornhaus, in Temporal Networks, edited by P. Holme, J. Saramäki (Springer, Berlin, 2013), pp. 217–244Google Scholar
  54. 54.
    I. Psorakis, S.J. Roberts, I. Rezek, B.C. Sheldon, J. R. Soc. Interface 9, 3055 (2012)CrossRefGoogle Scholar
  55. 55.
    J. Saramäki, E. Moro, Eur. Phys. J. B 88, 164 (2015)ADSCrossRefGoogle Scholar
  56. 56.
    M.X. Li, V. Palchykov, Z.Q. Jiang, K. Kaski, J. Kertész, S. Miccichè, M. Tumminello, W.X. Zhou, R.N. Mantegna, New J. Phys. 16, 083038 (2014)ADSCrossRefGoogle Scholar
  57. 57.
    G. Krings, M. Karsai, S. Bernhardsson, V.D. Blondel, J. Saramäki, EPJ Data Sci. 1, 4 (2012)CrossRefGoogle Scholar
  58. 58.
    M. Kivelä, R.K. Pan, K. Kaski, J. Kertész, J. Saramäki, M. Karsai, J. Stat. Mech: Theory Exp. 2012, P03005 (2012)CrossRefGoogle Scholar
  59. 59.
    M. Karsai, M. Kivelä, R.K. Pan, K. Kaski, J. Kertész, A.L. Barabási, J. Saramäki, Phys. Rev. E 83, 025102 (2011)ADSCrossRefGoogle Scholar
  60. 60.
    L. Kovanen, K. Kaski, J. Kertész, J. Saramäki, Proc. Natl. Acad. Sci. USA 110, 18070 (2013)ADSCrossRefGoogle Scholar
  61. 61.
    G. Miritello, R. Lara, E. Moro, in Temporal Networks, edited by P. Holme, J. Saramäki (Springer, Berlin, 2013), pp. 175–190Google Scholar
  62. 62.
    G. Miritello, R. Lara, M. Cebrian, E. Moro, Sci. Rep. 3, 1950 (2013)ADSCrossRefGoogle Scholar
  63. 63.
    G. Miritello, E. Moro, R. Lara, Phys. Rev. E 83, 045102 (2011)ADSCrossRefGoogle Scholar
  64. 64.
    Z.Q. Jiang, W.J. Xie, M.X. Li, B. Podobnik, W.X. Zhou, H.E. Stanley, Proc. Natl. Acad. Sci. USA 110, 1600 (2013)ADSCrossRefGoogle Scholar
  65. 65.
    H. Ebel, L.I. Mielsch, S. Bornholdt, Phys. Rev. E 66, 035103 (2002)ADSCrossRefGoogle Scholar
  66. 66.
    J.P. Eckmann, E. Moses, D. Sergi, Proc. Natl. Acad. Sci. USA 101, 14333 (2004)zbMATHMathSciNetADSCrossRefGoogle Scholar
  67. 67.
    A. Ferraz Costa, Y. Yamaguchi, A. Juci Machado Traina, C. Traina, Jr., C. Faloutsos, RSC: Mining and Modeling Temporal Activity in Social Media, in Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining KDD ’15 (ACM, New York, 2015), pp. 269–278Google Scholar
  68. 68.
    D.M. Romero, B. Meeder, J. Kleinberg, Differences in the Mechanics of Information Diffusion Across Topics: Idioms, Political Hashtags, and Complex Contagion on Twitter, in Proceedings of the 20th International Conference on World Wide Web WWW ’11 (ACM, New York, 2011), pp. 695–704Google Scholar
  69. 69.
    C. Sanlí, R. Lambiotte, arXiv:1508.00540 (2015)Google Scholar
  70. 70.
    A.L. Barabási, Nature 435, 207 (2005)ADSCrossRefGoogle Scholar
  71. 71.
    P. Holme, C.R. Edling, F. Liljeros, Soc. Networks 26, 155 (2004)CrossRefGoogle Scholar
  72. 72.
    F. Karimi, V.C. Ramenzoni, P. Holme, Physica A 414, 263 (2014)ADSCrossRefGoogle Scholar
  73. 73.
    A. Villani, A. Frigessi, F. Liljeros, M.K. Nordvik, B.F. de Blasio, PLoS One 7, e39717 (2012)ADSCrossRefGoogle Scholar
  74. 74.
    A.Z. Jacobs, S.F. Way, J. Ugander, A. Clauset, Assembling the facebook: Using heterogeneity to understand online social network assembly, in Proceedings of the ACM Web Science Conference, 2015 Google Scholar
  75. 75.
    J. Mathiesen, L. Angheluta, P.T.H. Ahlgren, M.H. Jensen, Proc. Natl. Acad. Sci. USA 110, 17259 (2013)ADSCrossRefGoogle Scholar
  76. 76.
    R. Kikas, M. Dumas, M. Karsai, Social Network Analysis and Mining 3, 1393 (2013)CrossRefGoogle Scholar
  77. 77.
    A. Moinet, M. Starnini, R. Pastor-Satorras, Phys. Rev. Lett. 114, 108701 (2015)ADSCrossRefGoogle Scholar
  78. 78.
    M.E.J. Newman, Phys. Rev. E 64, 025102 (2001)ADSCrossRefGoogle Scholar
  79. 79.
    B. Karrer, M.E.J. Newman, Phys. Rev. E 80, 046110 (2009)ADSCrossRefGoogle Scholar
  80. 80.
    Z.X. Wu, P. Holme, Phys. Rev. E 80, 037101 (2009)ADSCrossRefGoogle Scholar
  81. 81.
    M. Rosvall, A.V. Esquivel, A. Lancichinetti, J.D. West, R. Lambiotte, Nat. Commun. 5, 4630 (2014)ADSCrossRefGoogle Scholar
  82. 82.
    G. Petri, P. Expert, Phys. Rev. E 90, 022813 (2014)ADSCrossRefGoogle Scholar
  83. 83.
    D. Kondor, M. Pósfai, I. Csabai, G. Vattay, PLoS One 9, e86197 (2014)ADSCrossRefGoogle Scholar
  84. 84.
    B. Zhao, W. Wang, G. Xue, N. Yuan, Q. Tian, in Advances in Swarm and Computational Intelligence, Lect. Notes Comput. Sci., edited by Y. Tan, Y. Shi, F. Buarque, A. Gelbukh, S. Das, A. Engelbrecht (Springer International Publishing, 2015), Vol. 9141, pp. 63–70Google Scholar
  85. 85.
    U. Redmond, P. Cunningham, Temporal Subgraph Isomorphism, in Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining ASONAM ’13 (ACM, New York, 2013), pp. 1451–1452Google Scholar
  86. 86.
    X. Zhang, S. Shao, H.E. Stanley, S. Havlin, Europhys. Lett. 108, 58001 (2014)ADSCrossRefGoogle Scholar
  87. 87.
    X. Zhang, L. Feng, R.Q. Zhu, H.E. Stanley (2015), submitted to Eur. Phys. J. BGoogle Scholar
  88. 88.
    M. Popović, H. Štefančić, B. Sluban, P. Kralj Novak, M. Grčar, I. Mozetič, M. Puliga, V. Zlatić, PLoS One 9, e99515 (2014)ADSCrossRefGoogle Scholar
  89. 89.
    M. Catanzaro, M. Buchanan, Nat. Phys. 9, 121 (2013)CrossRefGoogle Scholar
  90. 90.
    The Complex Networks of Economic Interactions, edited by A. Namatame, T. Kaizouji, Y. Aruka (Springer, Berlin, 2006)Google Scholar
  91. 91.
    H.J. Park, K. Friston, Science 342, 1238411 (2013)CrossRefGoogle Scholar
  92. 92.
    O. Sporns, Dialogues Clin. Neurosci. 15, 247 (2013)Google Scholar
  93. 93.
    A. Baronchelli, R. Ferrer i Cancho, R. Pastor-Satorras, N. Chater, M.H. Christiansen, Trends Cogn. Sci. 17, 348 (2013)CrossRefGoogle Scholar
  94. 94.
    D.S. Bassett, N.F. Wymbs, M.P. Rombach, M.A. Porter, P.J. Mucha, S.T. Grafton, PLoS Comput. Biol. 9, e1003171 (2013)ADSCrossRefGoogle Scholar
  95. 95.
    D.S. Bassett, M. Yang, N.F. Wymbs, S.T. Grafton, Nat. Neurosci. 18, 744 (2015)CrossRefGoogle Scholar
  96. 96.
    A.V. Mantzaris, D.S. Bassett, N.F. Wymbs, E. Estrada, M.A. Porter, P.J. Mucha, S.T. Grafton, D.J. Higham, J. Complex Networks 1, 83 (2013)CrossRefGoogle Scholar
  97. 97.
    P. Kaluza, A. Kölzsch, M.T. Gastner, B. Blasius, J. R. Soc. Interface 7, 1093 (2010)CrossRefGoogle Scholar
  98. 98.
    P. Borgnat, C. Robardet, P. Abry, P. Flandrin, J.B. Rouquier, N. Tremblay, in Dynamics On and Of Complex Networks, edited by A. Mukherjee, M. Choudhury, F. Peruani, N. Ganguly, B. Mitra (Birkhäuser, Berlin, 2013), Vol. 2Google Scholar
  99. 99.
    N.C. Banks, D.R. Paini, K.L. Bayliss, M. Hodda, Ecol. Lett. 18, 188 (2015)CrossRefGoogle Scholar
  100. 100.
    F. Kuhn, N. Lynch, R. Oshman, Distributed Computation in Dynamic Networks, in Proceedings of the Forty-second ACM Symposium on Theory of Computing STOC ’10 (ACM, New York, USA, 2010), pp. 513–522Google Scholar
  101. 101.
    O. Michail, arXiv:1503.00278 (2015)Google Scholar
  102. 102.
    M. Pascual, J. Dunne, Ecological Networks: Linking Structure to Dynamics in Food Webs (Oxford University Press, Oxford, 2006)Google Scholar
  103. 103.
    R.V. Solé, J. Bascompte, Self-Organization in Complex Ecosystems (Princeton University Press, Princeton, 2006)Google Scholar
  104. 104.
    C. Rasmussen, Y.L. Dupont, J.B. Mosbacher, K. Trøjelsgaard, J.M. Olesen, PLoS One 8, e81694 (2013)ADSCrossRefGoogle Scholar
  105. 105.
    T.C. Matisziw, A.T. Murray, Landsc. Ecol. 24, 89 (2009)CrossRefGoogle Scholar
  106. 106.
    R.J. Hobbs, in Applying Landscape Ecology in Biological Conservation, edited by K.J. Gutzwiller (Springer, New York, 2002), pp. 150–170Google Scholar
  107. 107.
    M.J. Hasenjager, L.A. Dugatkin, in Advances in the Study of Behavior, edited by M. Naguib, H.J. Brockmann, J.C. Mitani, L.W. Simmons, L. Barrett, S. Healy, P.J.B. Slater (Academic Press, 2015), Vol. 47, pp. 39–114Google Scholar
  108. 108.
    B. Blonder, T.W. Wey, A. Dornhaus, R. James, A. Sih, Methods in Ecology and Evolution 3, 958 (2012)CrossRefGoogle Scholar
  109. 109.
    L.J. Jensen et al., Nucleic Acids Res. 37, D412 (2009)CrossRefGoogle Scholar
  110. 110.
    P. Kharchenko, G.M. Church, D. Vitkup, Mol. Syst. Biol. 1, 2005.0016 (2005)CrossRefGoogle Scholar
  111. 111.
    D.M. Gyurkó, D.V. Veres, D. Módos, K. Lenti, T. Korcsmáros, P. Csermely, Semin. Cancer Biol. 23, 262 (2013)CrossRefGoogle Scholar
  112. 112.
    I.W. Taylor, R. Linding, D. Warde-Farley, Y. Liu, C. Pesquita, D. Faria, S. Bull, T. Pawson, Q. Morris, J.L. Wrana, Nat. Biotech. 27, 199 (2009)CrossRefGoogle Scholar
  113. 113.
    J. Luo, L. Kuang, Comput. Biol. Chem. 52, 34 (2014)CrossRefGoogle Scholar
  114. 114.
    K.T.G. Rigbolt, T.A. Prokhorova, V. Akimov, J. Henningsen, P.T. Johansen, I. Kratchmarova, M. Kassem, M. Mann, J.V. Olsen, B. Blagoev, Sci. Signal. 4, rs3 (2011)CrossRefGoogle Scholar
  115. 115.
    J. West, G. Bianconi, S. Severini, A.E. Teschendorff, Sci. Rep. 2, 802 (2012)ADSCrossRefGoogle Scholar
  116. 116.
    K. Zhao, M. Karsai, G. Bianconi, in Temporal Networks, edited by P. Holme, J. Saramäki (Springer, Berlin, 2013), pp. 95–117Google Scholar
  117. 117.
    P. Ronhovde, S. Chakrabarty, D. Hu, M. Sahu, K. Sahu, K. Kelton, N. Mauro, Z. Nussinov, Eur. Phys. J. E 34, 105 (2011)CrossRefGoogle Scholar
  118. 118.
    P. Bearman, J. Moody, R. Faris, Complexity 8, 61 (2003)CrossRefGoogle Scholar
  119. 119.
    P.V. Beek, Artif. Intell. 58, 728 (1992)Google Scholar
  120. 120.
    V. Batagelj, P. Doreian, A. Ferligoj, N. Kejzar, Understanding Large Temporal Networks and Spatial Networks: Exploration, Pattern Searching, Visualization and Network Evolution (Wiley, Hoboken, 2014)Google Scholar
  121. 121.
    N. Perra, B. Gonçalves, R. Pastor-Satorras, A. Vespignani, Sci. Rep. 4, 4001 (2014)Google Scholar
  122. 122.
    V. Nicosia, J. Tang, C. Mascolo, M. Musolesi, G. Russo, V. Latora, in Temporal Networks, edited by P. Holme, J. Saramäki (Springer, Berlin, 2013), pp. 15–40Google Scholar
  123. 123.
    S. Boccaletti, G. Bianconi, R. Criado, C.I. del Genio, J. Gómez-Gardeñes, M. Romance, I. Sendiña-Nadal, Z. Wang, M. Zanin, Phys. Rep. 544, 1 (2014)MathSciNetADSCrossRefGoogle Scholar
  124. 124.
    M. Kivelä, A. Arenas, M. Barthelemy, J.P. Gleeson, Y. Moreno, M.A. Porter, J. Complex Networks 2, 203 (2014)CrossRefGoogle Scholar
  125. 125.
    K.M. Lee, B. Min, K.I. Goh, Eur. Phys. J. B 88, 48 (2015)ADSCrossRefGoogle Scholar
  126. 126.
    A.L. Barabási, R. Albert, Science 286, 509 (1999)MathSciNetADSCrossRefGoogle Scholar
  127. 127.
    C. Moore, G. Ghoshal, M.E.J. Newman, Phys. Rev. E 74, 036121 (2006)MathSciNetADSCrossRefGoogle Scholar
  128. 128.
    P.N. Krivitsky, M.S. Handcock, J. R. Stat. Soc. Ser. B 76, 29 (2014)MathSciNetCrossRefGoogle Scholar
  129. 129.
    T. Takaguchi, Y. Yano, Y. Yoshida, arXiv:1506.07032 (2015)Google Scholar
  130. 130.
    L. Speidel, T. Takaguchi, N. Masuda, Eur. Phys. J. B 88, 203 (2015)ADSCrossRefGoogle Scholar
  131. 131.
    L. Gauvin, A. Panisson, C. Cattuto, PLoS One 9, e86028 (2014)ADSCrossRefGoogle Scholar
  132. 132.
    L. Gauvin, A. Panisson, A. Barrat, C. Cattuto, arXiv:1501.02758 (2015)Google Scholar
  133. 133.
    E. Valdano, L. Ferreri, C. Poletto, V. Colizza, Phys. Rev. X 5, 021005 (2015)Google Scholar
  134. 134.
    K. Wehmuth, A. Ziviani, E. Fleury, Tech. Rep. 8466, Inria, 2014Google Scholar
  135. 135.
    D.M. Dunlavy, T.G. Kolda, E. Acar, ACM Trans. Knowl. Discov. Data 5, 10:1 (2011)CrossRefGoogle Scholar
  136. 136.
    R. Hamon, P. Borgnat, P. Flandrin, C. Robardet, arXiv:1505.03044 (2015)Google Scholar
  137. 137.
    B. Bach, E. Pietriga, J.D. Fekete, Visualizing Dense Dynamic Networks with Matrix Cubes, in IEEE Conference on Information Visualization (Atlanta, 2013)Google Scholar
  138. 138.
    J. Moody, D. McFarland, S. Bender-deMoll, Am. J. Sociology 110, 1206 (2005)CrossRefGoogle Scholar
  139. 139.
    P.A. Grabowicz, L.M. Aiello, F. Menczer, EPJ Data Sci. 3, 27 (2014)CrossRefGoogle Scholar
  140. 140.
    R. Lambiotte, L. Tabourier, J.C. Delvenne, Eur. Phys. J. B 86, 320 (2013)ADSCrossRefGoogle Scholar
  141. 141.
    P. Holme, PLoS Comput. Biol. 9, e1003142 (2013)MathSciNetADSCrossRefGoogle Scholar
  142. 142.
    E. Cheng, J.W. Grossman, M.J. Lipman, Discrete Appl. Math. 128, 317 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  143. 143.
    J. Moody, Soc. Forces 81, 25 (2002)CrossRefGoogle Scholar
  144. 144.
    V. Batagelj, S. Praprotnik, arXiv:1505.01569 (2015)Google Scholar
  145. 145.
    J. Whitbeck, M. Dias de Amorim, V. Conan, J.L. Guillaume, Temporal Reachability Graphs, in Proceedings of the 18th Annual International Conference on Mobile Computing and Networking Mobicom ’12 (ACM, New York, 2012), pp. 377–388Google Scholar
  146. 146.
    P. Holme, arXiv:1503.06583 (2015)Google Scholar
  147. 147.
    P. Holme, F. Liljeros, Sci. Rep. 4, 4999 (2014)ADSCrossRefGoogle Scholar
  148. 148.
    T. Takaguchi, N. Sato, K. Yano, N. Masuda, Inferring Directed Static Networks of Influence from Undirected Temporal Networks, in Computer Software and Applications Conference (COMPSAC), 2013 IEEE 37th Annual, pp. 155–156Google Scholar
  149. 149.
    G. Ver Steeg, A. Galstyan, Information Transfer in Social Media, in Proceedings of the 21st International Conference on World Wide Web WWW ’12 (ACM, New York, 2012), pp. 509–518Google Scholar
  150. 150.
    C.H. Watts, R.M. May, Math. Biosci. 108, 89 (1992)CrossRefGoogle Scholar
  151. 151.
    M. Kretzschmar, M. Morris, Math. Biosci. 133, 165 (1996)zbMATHCrossRefGoogle Scholar
  152. 152.
    M. Morris, M. Kretzschmar, Soc. Networks 17, 299 (1995)CrossRefGoogle Scholar
  153. 153.
    V. Neiger, C. Crespelle, E. Fleury, On the structure of changes in dynamic contact networks, in Signal Image Technology and Internet Based Systems (SITIS), 2012, pp. 731–738Google Scholar
  154. 154.
    R. Lambiotte, V. Salnikov, M. Rosvall, J. Complex Networks 3, 177 (2015)MathSciNetCrossRefGoogle Scholar
  155. 155.
    L. Speidel, R. Lambiotte, K. Aihara, N. Masuda, Phys. Rev. E 91, 012806 (2015)ADSCrossRefMathSciNetGoogle Scholar
  156. 156.
    B. Min, K.I. Goh, A. Vazquez, Phys. Rev. E 83, 036102 (2011)ADSCrossRefGoogle Scholar
  157. 157.
    A. Vazquez, in Temporal Networks, edited by P. Holme, J. Saramäki (Springer, Berlin, 2013), pp. 161–174Google Scholar
  158. 158.
    M. Kivelä, M.A. Porter, arXiv:1412.8388 (2014)Google Scholar
  159. 159.
    P. Holme, Europhys. Lett. 64, 427 (2003)ADSCrossRefGoogle Scholar
  160. 160.
    L. Lü, T. Zhou, Physica A 390, 1150 (2011)ADSCrossRefGoogle Scholar
  161. 161.
    A.V. Mantzaris, D.J. Higham, in Temporal Networks, edited by P. Holme, J. Saramäki (Springer, Berlin, 2013), pp. 265–282Google Scholar
  162. 162.
    J. Kunegis, M. Blattner, C. Moser, Preferential Attachment in Online Networks: Measurement and Explanations, in Proceedings of the 5th Annual ACM Web Science Conference WebSci ’13 (ACM, New York, 2013), pp. 205–214Google Scholar
  163. 163.
    P. Holme, N. Masuda, PLoS One 10, e0120567 (2015)CrossRefGoogle Scholar
  164. 164.
    J.C. Delvenne, R. Lambiotte, L.E.C. Rocha, Nat. Commun. 6, 7366 (2015)ADSCrossRefGoogle Scholar
  165. 165.
    A. Johansen, Physica A 338, 286 (2004)ADSCrossRefGoogle Scholar
  166. 166.
    K.I. Goh, A.L. Barabási, Europhys. Lett. 81, 48002 (2008)ADSCrossRefGoogle Scholar
  167. 167.
    B. Min, K.I. Goh, in Temporal Networks, edited by P. Holme, J. Saramäki (Springer, Berlin, 2013), pp. 41–64Google Scholar
  168. 168.
    H.H. Jo, M. Karsai, J. Kertész, K. Kaski, New J. Phys. 14, 013055 (2012)ADSCrossRefGoogle Scholar
  169. 169.
    T. Aledavood, E. López, S.G.B. Roberts, F. Reed-Tsochas, E. Moro, R.I.M. Dunbar, J. Saramäki, arXiv:1502.06866 (2015)Google Scholar
  170. 170.
    T. Aledavood, S. Lehmann, J. Saramäki, arXiv:1507.08199 (2015)Google Scholar
  171. 171.
    M. Karsai, K. Kaski, J. Kertész, PLoS One 7, e40612 (2012)ADSCrossRefGoogle Scholar
  172. 172.
    M. Karsai, K. Kaski, A.L. Barabási, J. Kertész, Sci. Rep. 2, 397 (2012)ADSCrossRefGoogle Scholar
  173. 173.
    A. Albano, J.L. Guillaume, S. Heymann, B. Le Grand, A matter of time – intrinsic or extrinsic – for diffusion in evolving complex networks, in IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), 2013, pp. 202–206Google Scholar
  174. 174.
    A. Albano, J.L. Guillaume, B. Le Grand, On the use of intrinsic time scale for dynamic community detection and visualization in social networks, in IEEE Eighth International Conference on Research Challenges in Information Science (RCIS), 2014, pp. 1–11Google Scholar
  175. 175.
    J. Saramäki, P. Holme, arXiv:1508.00693 (2015)Google Scholar
  176. 176.
    R.K. Pan, J. Saramäki, Phys. Rev. E 84, 016105 (2011)ADSCrossRefGoogle Scholar
  177. 177.
    P. Holme, Phys. Rev. E 71, 046119 (2005)ADSCrossRefGoogle Scholar
  178. 178.
    S. Bayhan, E. Hyytiä, J. Kangasharju, J. Ott, Analysis of Hop Limit in Opportunistic Networks by Static and Time-Aggregated Graphs, in IEEE International Conference on Communications (ICC’15) (London, 2015)Google Scholar
  179. 179.
    B. Bui Xuan, A. Ferreira, A. Jarry, Int. J. Found. Comput. Sci. 14, 267 (2002)MathSciNetCrossRefGoogle Scholar
  180. 180.
    H. Wu, J. Cheng, S. Huang, Y. Ke, Y. Lu, Y. Xu, Proc. VLDB Endow. 7, 721 (2014)CrossRefGoogle Scholar
  181. 181.
    A. Casteigts, P. Flocchini, W. Quattrociocchi, N. Santoro, in Ad-hoc, Mobile, and Wireless Networks, Lect. Notes Comput. Sci., edited by H. Frey, X. Li, S. Ruehrup (Springer Berlin Heidelberg, 2011), Vol. 6811, pp. 346–359Google Scholar
  182. 182.
    M. Starnini, A. Baronchelli, A. Barrat, R. Pastor-Satorras, Phys. Rev. E 85, 056115 (2012)ADSCrossRefGoogle Scholar
  183. 183.
    V. Iyer, Q. Liu, S. Dulman, K. Langendoen, Adaptive Online Estimation of Temporal Connectivity in Dynamic Wireless Networks, in IEEE 7th International Conference on Self-Adaptive and Self-Organizing Systems (SASO), 2013, pp. 237–246Google Scholar
  184. 184.
    H. Kim, R. Anderson, Phys. Rev. E 85, 026107 (2012)ADSCrossRefGoogle Scholar
  185. 185.
    V. Nicosia, J. Tang, M. Musolesi, G. Russo, C. Mascolo, V. Latora, Chaos 22, 023101 (2012)MathSciNetADSCrossRefGoogle Scholar
  186. 186.
    H. Kim, J. Tang, R. Anderson, C. Mascolo, Comput. Networks 56, 983 (2012)CrossRefGoogle Scholar
  187. 187.
    R. Michalski, T. Kajdanowicz, P. Bródka, P. Kazienko, New Generat. Comput. 32, 213 (2014)CrossRefGoogle Scholar
  188. 188.
    Habiba, C. Tantipathananandh, T.Y. Berger-Wolf, Tech. Rep. 2007-19, DIMACS (2007)Google Scholar
  189. 189.
    J. Tang, I. Leontiadis, S. Scellato, V. Nicosia, C. Mascolo, M. Musolesi, V. Latora, in Temporal Networks, edited by P. Holme, J. Saramäki (Springer, Berlin, 2013), pp. 135–159Google Scholar
  190. 190.
    E. Ser-Giacomi, R. Vasile, E. Hernández-García, C. López, Phys. Rev. E 92, 012818 (2015)ADSCrossRefGoogle Scholar
  191. 191.
    A. Alsayed, D.J. Higham, Chaos Solitons Fractals 72, 35 (2015)MathSciNetADSCrossRefGoogle Scholar
  192. 192.
    M.J. Williams, M. Musolesi, arXiv:1506.00627 (2015)Google Scholar
  193. 193.
    T. Takaguchi, N. Sato, K. Yano, N. Masuda, New J. Phys. 14, 093003 (2012)ADSCrossRefGoogle Scholar
  194. 194.
    L.E.C. Rocha, N. Masuda, New J. Phys. 16, 063023 (2014)MathSciNetADSCrossRefGoogle Scholar
  195. 195.
    P. Grindrod, M.C. Parsons, D.J. Higham, E. Estrada, Phys. Rev. E 83, 046120 (2011)ADSCrossRefGoogle Scholar
  196. 196.
    E. Estrada, Phys. Rev. E 88, 042811 (2013)ADSCrossRefGoogle Scholar
  197. 197.
    A.V. Mantzaris, D.J. Higham, in Temporal Networks, edited by P. Holme, J. Saramäki (Springer, Berlin, 2013), pp. 283–294Google Scholar
  198. 198.
    T. Rogers, J. Complex Networks 3, 113 (2015)CrossRefGoogle Scholar
  199. 199.
    S. Praprotnik, V. Batagelj, Ars Math. Contemp. 11, 11 (2015)Google Scholar
  200. 200.
    D. Taylor, S.A. Myers, A. Clauset, M.A. Porter, P.J. Mucha, arXiv:1507.01266 (2015)Google Scholar
  201. 201.
    Y. Pan, X. Li, PLoS One 9, e94998 (2014)ADSCrossRefGoogle Scholar
  202. 202.
    Y.Q. Zhang, X. Li, Characterizing Large-scale Population’s Indoor Spatio-temporal Interactive Behaviors, in Proceedings of the ACM SIGKDD International Workshop on Urban Computing UrbComp ’12 (ACM, New York, 2012), pp. 25–32Google Scholar
  203. 203.
    G. Ghoshal, P. Holme, Physica A 364, 603 (2006)ADSCrossRefGoogle Scholar
  204. 204.
    P. Grindrod, D.J. Higham, Proc. R. Soc. London Ser. A 470, 20130835 (2014)MathSciNetADSCrossRefGoogle Scholar
  205. 205.
    P. Grindrod, D.J. Higham, SIAM Rev. 55, 118 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  206. 206.
    P. Laflin, A.V. Mantzaris, P. Grindrod, F. Ainley, A. Otley, D.J. Higham, Social Network Analysis and Mining 3, 1311 (2013)CrossRefGoogle Scholar
  207. 207.
    S. Motegi, N. Masuda, Sci. Rep. 2, 904 (2012)ADSCrossRefGoogle Scholar
  208. 208.
    Y.Y. Liu, J.J. Slotine, A.L. Barabási, Nature 473, 167 (2011)ADSCrossRefGoogle Scholar
  209. 209.
    M. Pósfai, P. Hövel, New J. Phys. 16, 123055 (2014)MathSciNetCrossRefGoogle Scholar
  210. 210.
    A. Cimatti, L. Hunsberger, A. Micheli, R. Posenato, M. Roveri, Sound and Complete Algorithms for Checking the Dynamic Controllability of Temporal Networks with Uncertainty, Disjunction and Observation, in 21st International Symposium on Temporal Representation and Reasoning (TIME), 2014, pp. 27–36Google Scholar
  211. 211.
    Y. Pan, X. Li, Towards a graphic tool of structural controllability of temporal networks, in IEEE International Symposium on Circuits and Systems (ISCAS), 2014, pp. 1784–1787Google Scholar
  212. 212.
    S. Scellato, I. Leontiadis, C. Mascolo, P. Basu, M. Zafer, IEEE Trans. Mob. Comput. 12, 105 (2013)CrossRefGoogle Scholar
  213. 213.
    L. Chi, C. Yang (2015), to appear in Nonlinear Theory and its ApplicationsGoogle Scholar
  214. 214.
    J.I. Perotti, H.H. Jo, P. Holme, J. Saramäki, arXiv:1411.5553 (2014)Google Scholar
  215. 215.
    A. Clauset, N. Eagle, Persistence and Periodicity in a Dynamic Proximity Network, in DIMACS Workshop on Computational Methods for Dynamic Interaction Networks (DIMACS, Piscataway, 2007)Google Scholar
  216. 216.
    M. Lahiri, T.Y. Berger-Wolf, Mining Periodic Behavior in Dynamic Social Networks, in Eighth IEEE International Conference on Data Mining, 2008 Google Scholar
  217. 217.
    Q. Zhao, Y. Tian, Q. He, N. Oliver, R. Jin, W.C. Lee, Communication motifs: A tool to characterize social communications, in Proceedings of the 19th ACM international conference on Information and knowledge management, 2010, pp. 1645–1648Google Scholar
  218. 218.
    L. Kovanen, M. Karsai, K. Kaski, J. Kertész, J. Saramäki, in Temporal Networks, edited by P. Holme, J. Saramäki (Springer, Berlin, 2013), pp. 119–133Google Scholar
  219. 219.
    J. Cui, Y.Q. Zhang, X. Li, On the clustering coefficients of temporal networks and epidemic dynamics, in 2013 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2299–2302Google Scholar
  220. 220.
    L.E.C. Rocha, V.D. Blondel, Phys. Rev. E 87, 042814 (2013)ADSCrossRefGoogle Scholar
  221. 221.
    Y. Hulovatyy, H. Chen, T. Milenković, Bioinformatics 31, i171 (2015)CrossRefGoogle Scholar
  222. 222.
    S. Fortunato, Phys. Rep. 486, 75 (2010)MathSciNetADSCrossRefGoogle Scholar
  223. 223.
    X. Zhang, T. Martin, M.E.J. Newman, Phys. Rev. E 91, 032803 (2015)ADSCrossRefGoogle Scholar
  224. 224.
    M.P. Rombach, M.A. Porter, J.H. Fowler, P.J. Mucha, SIAM J. Appl. Math. 74, 167 (2014)zbMATHMathSciNetCrossRefGoogle Scholar
  225. 225.
    A. Grönlund, P. Holme, Phys. Rev. E 70, 036108 (2004)ADSCrossRefGoogle Scholar
  226. 226.
    C. Tantipathananandh, T.Y. Berger-Wolf, D. Kempe, A framework for community identification in dynamical social networks, in Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2007, pp. 717–726Google Scholar
  227. 227.
    J. Kauffman, A. Kittas, L. Bennett, S. Tsoka, PLoS One 9, e101357 (2014)ADSCrossRefGoogle Scholar
  228. 228.
    F. Folino, C. Pizzuti, IEEE Trans. Knowl. Data Eng. 26, 1838 (2014)CrossRefGoogle Scholar
  229. 229.
    P.J. Mucha, T. Richardson, K. Macon, M.A. Porter, J.P. Onnela, Science 328, 876 (2010)zbMATHMathSciNetADSCrossRefGoogle Scholar
  230. 230.
    A.K. Pietilänen, C. Diot, Dissemination in Opportunistic Social Networks: The Role of Temporal Communities, in Proceedings of the Thirteenth ACM International Symposium on Mobile Ad Hoc Networking and Computing MobiHoc ’12 (ACM, New York, 2012), pp. 165–174Google Scholar
  231. 231.
    J. He, D. Chen, Physica A 429, 87 (2015)ADSCrossRefGoogle Scholar
  232. 232.
    M. Rosvall, C.T. Bergstrom, PLoS One 5, e8694 (2010)ADSCrossRefGoogle Scholar
  233. 233.
    M. Bazzi, M.A. Porter, S. Williams, M. McDonald, D.J. Fenn, S.D. Howison, arXiv:1501.00040 (2015)Google Scholar
  234. 234.
    Y. Chen, V. Kawadia, R. Urgaonkar, arXiv:1303.7226 (2013)Google Scholar
  235. 235.
    J. Stehlé et al., PLoS One 6, e23176 (2011)ADSCrossRefGoogle Scholar
  236. 236.
    C. Matias, V. Miele, arXiv:1506.07464 (2015)Google Scholar
  237. 237.
    F. Cai, L. Min, Z. Deqing, Q. Shuyan, H. Lansheng, J.J. Park, Int. J. Distrib. Sens. Netw. 2013, 281565 (2013)Google Scholar
  238. 238.
    T.P. Peixoto, arXiv:1504.02381 (2015)Google Scholar
  239. 239.
    L. Peel, A. Clauset, Detecting Change Points in the Large-Scale Structure of Evolving Networks (2015),
  240. 240.
    F. Liljeros, C.R. Edling, L.A.N. Amaral, Microbes Infect. 5, 189 (2003)CrossRefGoogle Scholar
  241. 241.
    P. Holme, Proc. IEEE 102, 1922 (2014)CrossRefGoogle Scholar
  242. 242.
    J.C. Delvenne, S.N. Yaliraki, M. Barahona, Proc. Natl. Acad. Sci. USA 107, 12755 (2010)ADSCrossRefGoogle Scholar
  243. 243.
    B. Ribeiro, N. Perra, A. Baronchelli, Sci. Rep. 3, 3006 (2013)ADSCrossRefGoogle Scholar
  244. 244.
    R.S. Caceres, T. Berger-Wolf, in Temporal Networks, edited by P. Holme, J. Saramäki (Springer, Berlin, 2013), pp. 65–94Google Scholar
  245. 245.
    B. Fish, R.S. Caceres, arXiv:1504.06667 (2015)Google Scholar
  246. 246.
    H.H.K. Lentz, T. Selhorst, I.M. Sokolov, Phys. Rev. Lett. 110, 118701 (2013)ADSCrossRefGoogle Scholar
  247. 247.
    A. Cardillo, G. Petri, V. Nicosia, R. Sinatra, J. Gómez-Gardeñes, V. Latora, Phys. Rev. E 90, 052825 (2014)ADSCrossRefGoogle Scholar
  248. 248.
    V.P. Backlund, J. Saramäki, R.K. Pan, Phys. Rev. E 89, 062815 (2014)ADSCrossRefGoogle Scholar
  249. 249.
    U. Redmond, M. Harrigan, P. Cunningham, Identifying Time-Respecting Subgraphs in Temporal Networks, in Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, edited by M. Atzmueller, A. Hotho (ACM, New York, 2012), pp. 51–63Google Scholar
  250. 250.
    N. Antulov-Fantulin, A. Lančić, T. Šmuc, H. Štefančić, M. Šikić, Phys. Rev. Lett. 114, 248701 (2015)ADSCrossRefGoogle Scholar
  251. 251.
    R. Milo, R. Kashtan, S. Itzkovitz, M.E.J. Newman, U. Alon, arXiv:cond-mat/0312028 (2015)Google Scholar
  252. 252.
    P. Bajardi, A. Barrat, F. Natale, L. Savini, V. Colizza, PLoS One 6, e19869 (2011)ADSCrossRefGoogle Scholar
  253. 253.
    T. Donker, J. Wallinga, H. Grundmann, J. Hosp. Infect. 86, 34 (2014)CrossRefGoogle Scholar
  254. 254.
    M. Ogura, V.M. Preciado, arXiv:1507.07017 (2015)Google Scholar
  255. 255.
    N. Fujiwara, Nonlinear Theory and Its Applications, IEICE 6, 295 (2015)Google Scholar
  256. 256.
    P. Flocchini, B. Mans, N. Santoro, Theor. Comput. Sci. 469, 53 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  257. 257.
    Y. Dhote, N. Mishra, S. Sharma, Survey and analysis of temporal link prediction in online social networks, in International Conference on Advances in Computing, Communications and Informatics (ICACCI), 2013, pp. 1178–1183Google Scholar
  258. 258.
    M. Génois, C.L. Vestergaard, J. Fournet, A. Panisson, I. Bonmarin, A. Barrat, arXiv:1503.04066 (2015)Google Scholar
  259. 259.
    L.E.C. Rocha, V.D. Blondel, PLoS Comput. Biol. 9, e1002974 (2013)MathSciNetADSCrossRefGoogle Scholar
  260. 260.
    N. Perra, A. Baronchelli, D. Mocanu, B. Gonçalves, R. Pastor-Satorras, A. Vespignani, Phys. Rev. Lett. 109, 238701 (2012)ADSCrossRefGoogle Scholar
  261. 261.
    M. Karsai, N. Perra, A. Vespignani, Sci. Rep. 4, 4001 (2014)ADSCrossRefGoogle Scholar
  262. 262.
    S.Y. Liu, A. Baronchelli, N. Perra, Phys. Rev. E 87, 032805 (2013)ADSCrossRefGoogle Scholar
  263. 263.
    S. Liu, N. Perra, M. Karsai, A. Vespignani, Phys. Rev. Lett. 112, 118702 (2014)ADSCrossRefGoogle Scholar
  264. 264.
    M. Starnini, R. Pastor-Satorras, Phys. Rev. E 89, 032807 (2014)ADSCrossRefGoogle Scholar
  265. 265.
    K. Sun, A. Baronchelli, N. Perra, arXiv:1404.1006 (2014)Google Scholar
  266. 266.
    D. Han, M. Sun, D. Li, Physica A 432, 354 (2015)MathSciNetADSCrossRefGoogle Scholar
  267. 267.
    M. Starnini, R. Pastor-Satorras, Phys. Rev. E 87, 062807 (2013)ADSCrossRefGoogle Scholar
  268. 268.
    H.H. Jo, J.I. Perotti, K. Kaski, J. Kertész, Phys. Rev. X 4, 011041 (2014)Google Scholar
  269. 269.
    G. Laurent, J. Saramäki, M. Karsai, arXiv:1506.00393 (2015)Google Scholar
  270. 270.
    A. Sunny, B. Kotnis, J. Kuri, Phys. Rev. E 92, 022811 (2015)ADSCrossRefGoogle Scholar
  271. 271.
    M. Starnini, A. Baronchelli, R. Pastor-Satorras, Phys. Rev. Lett. 110, 168701 (2013)ADSCrossRefGoogle Scholar
  272. 272.
    Y.Q. Zhang, X. Li, D. Liang, J. Cui, IEEE Commun. Lett. 19, 1225 (2015)CrossRefGoogle Scholar
  273. 273.
    A.V. Mantzaris, D.J. Higham, Eur. J. Appl. Math. 23, 659 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  274. 274.
    V. Raghavan, G.V. Steeg, A. Galstyan, A.G. Tartakovsky, IEEE Trans. Comput. Social Syst. 1, 89 (2014)CrossRefGoogle Scholar
  275. 275.
    T.Y. Hsu, A.D. Kshemkalyani, M. Shen, Modeling User Interactions in Social Communication Networks with Variable Social Vector Clocks, in 28th International Conference on Advanced Information Networking and Applications Workshops (WAINA), 2014, pp. 96–101Google Scholar
  276. 276.
    C.L. Vestergaard, M. Génois, A. Barrat, Phys. Rev. E 90, 042805 (2014)ADSCrossRefGoogle Scholar
  277. 277.
    N. Masuda, T. Takaguchi, N. Sato, K. Yano, in Temporal Networks, edited by P. Holme, J. Saramäki (Springer, Berlin, 2013), pp. 245–264Google Scholar
  278. 278.
    Y.S. Cho, A. Galstyan, P.J. Brantingham, G. Tita, Discrete and Continuous Dynamical Systems – Series B 19, 1335 (2014)zbMATHMathSciNetCrossRefGoogle Scholar
  279. 279.
    J.R. Zipkin, F.P. Schoenberg, K. Coronges, A.L. Bertozzi (2014),˜bertozzi/papers/EJAM-Zipkin-2014.pdf
  280. 280.
    E.R. Colman, D. Vukadinović Greetham, Phys. Rev. E 92, 012817 (2015)ADSCrossRefGoogle Scholar
  281. 281.
    F. Karimi, P. Holme, Physica A 392, 3476 (2013)ADSCrossRefGoogle Scholar
  282. 282.
    M.A. Porter, J.P. Gleeson, arXiv:1403.7663 (2014)Google Scholar
  283. 283.
    A. Sousa da Mata, R. Pastor-Satorras, Eur. Phys. J. B 88, 12 (2015)ADSCrossRefGoogle Scholar
  284. 284.
    D. ben-Avraham, S. Havlin, Diffusion and Reactions in Fractals and Disordered Systems (Cambridge University Press, Cambridge, 2000)Google Scholar
  285. 285.
    V. Ramiro, E. Lochin, P. Senac, T. Rakotoarivelo, Temporal random walk as a lightweight communication infrastructure for opportunistic networks, in IEEE 15th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), 2014, pp. 1–6Google Scholar
  286. 286.
    M. Gueuning, J. Delvenne, R. Lambiotte, arXiv:1508.04006 (2015)Google Scholar
  287. 287.
    A. Barrat, B. Fernandez, K.K. Lin, L.S. Young, Phys. Rev. Lett. 110, 158702 (2013)ADSCrossRefGoogle Scholar
  288. 288.
    T. Hoffmann, M.A. Porter, R. Lambiotte, Phys. Rev. E 86, 046102 (2012)ADSCrossRefGoogle Scholar
  289. 289.
    T. Hoffmann, M.A. Porter, R. Lambiotte, in Temporal Networks, edited by P. Holme, J. Saramäki (Springer, Berlin, 2013), pp. 295–313Google Scholar
  290. 290.
    N. Masuda, K. Klemm, V.M. Eguíluz, Phys. Rev. Lett. 111, 188701 (2013)ADSCrossRefGoogle Scholar
  291. 291.
    N. Masuda, P. Holme, F1000Prime Rep. 5, 6 (2015)Google Scholar
  292. 292.
    H.W. Hethcote, SIAM Rev. 42, 599 (2000)zbMATHMathSciNetADSCrossRefGoogle Scholar
  293. 293.
    M.J. Keeling, K.T.D. Eames, J. R. Soc. Interface 2, 295 (2005)CrossRefGoogle Scholar
  294. 294.
    P. Holme, Journal of Logistical Engineering University 30, 1 (2014)Google Scholar
  295. 295.
    A.L. Lloyd, Theor. Popul Biol. 60, 59 (2001)CrossRefGoogle Scholar
  296. 296.
    C.L. Vestergaard, M. Génois, arXiv:1504.01298 (2015)Google Scholar
  297. 297.
    C.S. Riolo, J.S. Koopman, J.S. Chick, J. Urban Health 78, 446 (2001)CrossRefGoogle Scholar
  298. 298.
    N.H. Fefferman, K.L. Ng, Phys. Rev. E 76, 031919 (2007)MathSciNetADSCrossRefGoogle Scholar
  299. 299.
    A. Bramson, B. Vandermarliere, J. Complex Networks (2015), in press, DOI: 10.1093/comnet/cnv009
  300. 300.
    Y. Zhu, D. Li, W. Guo, F. Zhang, Math. Probl. Eng. 2014, 409510 (2014)Google Scholar
  301. 301.
    D.X. Horváth, J. Kertész, New J. Phys. 16, 073037 (2014)CrossRefGoogle Scholar
  302. 302.
    A. Machens, F. Gesualdo, C. Rizzo, A.E. Tozzi, A. Barrat, C. Cattuto, BMC Infect. Dis. 13, 185 (2013)CrossRefGoogle Scholar
  303. 303.
    G. Ren, X. Wang, Chaos 24, 023116 (2014)ADSCrossRefMathSciNetGoogle Scholar
  304. 304.
    L.E.C. Rocha, A. Decuyper, V.D. Blondel, in Dynamics On and Of Complex Networks, Modeling and Simulation in Science, Engineering and Technology, edited by A. Mukherjee, M. Choudhury, F. Peruani, N. Ganguly, B. Mitra (Springer, New York, 2013), Vol. 2, pp. 301–314Google Scholar
  305. 305.
    Y.Q. Zhang, X. Li, Europhys. Lett. 108, 28006 (2014)ADSCrossRefGoogle Scholar
  306. 306.
    S. Lee, L.E.C. Rocha, F. Liljeros, P. Holme, PLoS One 7, e36439 (2012)ADSCrossRefGoogle Scholar
  307. 307.
    M. Starnini, A. Machens, C. Cattuto, A. Barrat, R. Pastor-Satorras, J. Theor. Biol. 337, 89 (2013)MathSciNetCrossRefGoogle Scholar
  308. 308.
    S. Osawa, T. Murata, in Complex Networks VI, Studies in Computational Intelligence, edited by G. Mangioni, F. Simini, S.M. Uzzo, D. Wang (Springer International Publishing, 2015), Vol. 597, pp. 91–98Google Scholar
  309. 309.
    Habiba, Y. Yu, T.Y. Berger-Wolf, J. Saia, in Advances in Social Network Mining and Analysis, Lect. Notes Comput. Sci., edited by L. Giles, M. Smith, J. Yen, H. Zhang (Springer, Berlin, Heidelberg, 2010), Vol. 5498, pp. 55–76Google Scholar
  310. 310.
    M.C. Vernon, M.J. Keeling, Proc. R. Soc. London Ser. B 276, 469 (2009)CrossRefGoogle Scholar
  311. 311.
    S. Schärrer, S. Widgren, H. Schwermer, A. Lindberg, B. Vidondo, J. Zinsstag, M. Reist, BMC Vet. Res. 11, 149 (2015)CrossRefGoogle Scholar
  312. 312.
    A. Cori, P.Y. Boëlle, G. Thomas, G.M. Leung, A.J. Valleron, PLoS Comput. Biol. 9, e1000471 (2009)CrossRefGoogle Scholar
  313. 313.
    G.D. Martino, S. Spina, Physica A 438, 634 (2015)MathSciNetCrossRefADSGoogle Scholar
  314. 314.
    A. Guille, H. Hacid, C. Favre, D.A. Zighed, SIGMOD Rec. 42, 17 (2013)CrossRefGoogle Scholar
  315. 315.
    F. Karimi, P. Holme, in Temporal Networks, edited by P. Holme, J. Saramäki (Springer, Berlin, 2013), pp. 315–329Google Scholar
  316. 316.
    D.J. Watts, Proc. Natl. Acad. Sci. USA 99, 5766 (2002)zbMATHMathSciNetADSCrossRefGoogle Scholar
  317. 317.
    T. Takaguchi, N. Masuda, P. Holme, PLoS One 8, e68629 (2013)ADSCrossRefGoogle Scholar
  318. 318.
    K. Hoppe, G.J. Rodgers, Phys. Rev. E 88, 042804 (2013)ADSCrossRefGoogle Scholar
  319. 319.
    J. Fernández-Gracia, V.M. Eguíluz, M.S. Miguel, in Temporal Networks, edited by P. Holme, J. Saramäki (Springer, Berlin, 2013), pp. 331–352Google Scholar
  320. 320.
    R. Nishi, N. Masuda, Europhys. Lett. 107, 48003 (2014)ADSCrossRefGoogle Scholar
  321. 321.
    R. Durrett, Lecture Notes on Particle Systems and Percolation (Wadsworth, Belmont, 1988)Google Scholar
  322. 322.
    L. Gauvin, A. Panisson, C. Cattuto, A. Barrat, Sci. Rep. 3, 3099 (2013)ADSCrossRefGoogle Scholar
  323. 323.
    R. Albert, H. Jeong, A.L. Barabási, Nature 406, 378 (2000)ADSCrossRefGoogle Scholar
  324. 324.
    S. Trajanovski, S. Scellato, I. Leontiadis, Phys. Rev. E 85, 066105 (2012)ADSCrossRefGoogle Scholar
  325. 325.
    S. Sur, N. Ganguly, A. Mukherjee, Physica A 420, 98 (2015)ADSCrossRefGoogle Scholar
  326. 326.
    A. Buscarino, M. Frasca, L.V. Gambuzza, P. Hövel, Phys. Rev. E 91, 022817 (2015)ADSCrossRefGoogle Scholar
  327. 327.
    S.H. Lee, S. Lee, S.W. Son, P. Holme, Phys. Rev. E 85, 027202 (2012)ADSCrossRefGoogle Scholar
  328. 328.
    V. Kohar, P. Ji, A. Choudhary, S. Sinha, J. Kurths, Phys. Rev. E 90, 022812 (2014)ADSCrossRefGoogle Scholar
  329. 329.
    D.S. Bassett, N.F. Wymbs, M.A. Porter, P.J. Mucha, S.T. Grafton, Chaos 24, 013112 (2014)ADSCrossRefMathSciNetGoogle Scholar
  330. 330.
    G. Szabó, G. Fáth, Phys. Rep. 446, 97 (2007)MathSciNetADSCrossRefGoogle Scholar
  331. 331.
    B. George, S. Kim, Spatio-temporal Networks: An Introduction, SpringerBriefs in Computer Science (Springer, New York, 2013)Google Scholar
  332. 332.
    M. Sarzynska, E.A. Leicht, G. Chowell, M.A. Porter, arXiv:1407.6297 (2014)Google Scholar
  333. 333.
    F. Zaidi, C. Muelder, A. Sallaberry, in Encyclopedia of Social Network Analysis and Mining, edited by R. Alhajj, J. Rokne (Springer, Berlin, Heidelberg, 2014), pp. 37–48Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Energy ScienceSungkyunkwan UniversitySuwonKorea

Personalised recommendations