Advertisement

Model of human collective decision-making in complex environments

  • Giuseppe CarboneEmail author
  • Ilaria Giannoccaro
Regular Article

Abstract

A continuous-time Markov process is proposed to analyze how a group of humans solves a complex task, consisting in the search of the optimal set of decisions on a fitness landscape. Individuals change their opinions driven by two different forces: (i) the self-interest, which pushes them to increase their own fitness values, and (ii) the social interactions, which push individuals to reduce the diversity of their opinions in order to reach consensus. Results show that the performance of the group is strongly affected by the strength of social interactions and by the level of knowledge of the individuals. Increasing the strength of social interactions improves the performance of the team. However, too strong social interactions slow down the search of the optimal solution and worsen the performance of the group. In particular, we find that the threshold value of the social interaction strength, which leads to the emergence of a superior intelligence of the group, is just the critical threshold at which the consensus among the members sets in. We also prove that a moderate level of knowledge is already enough to guarantee high performance of the group in making decisions.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    L. Conradt, T.J. Roper, Nature 421, 155 (2003)CrossRefADSGoogle Scholar
  2. 2.
    I.D. Couzin, J. Krause, N.R. Franks, S.A. Levin, Nature 433, 513 (2005)CrossRefADSGoogle Scholar
  3. 3.
    M.J.B. Krieger, J.-B. Billeter, L. Keller, Nature 406, 992 (2000)CrossRefADSGoogle Scholar
  4. 4.
    M. Rubenstein, A. Cornejo, R. Nagpal, Science 345, 795 (2014)CrossRefADSGoogle Scholar
  5. 5.
    J. Werfel, K. Petersen, R. Nagpal, Science 343, 754 (2014)CrossRefADSGoogle Scholar
  6. 6.
    M. Brambilla, E. Ferrante, M. Birattari, M. Dorigo, Swarm Intell. 7, 1 (2013)CrossRefGoogle Scholar
  7. 7.
    C.H. Lee, A. Lucas, Phys. Rev. E 90, 052804 (2014)CrossRefADSGoogle Scholar
  8. 8.
    C.D. Brummitt, S. Chatterjee, P.S. Dey, D. Sivakoff, Ann. Appl. Probab. 25, 2013 (2015)CrossRefMathSciNetGoogle Scholar
  9. 9.
    R.J.G. Clément, S. Krause, N. von Engelhardt, J.J. Faria, J. Krause, R.H.J.M. Kurvers, PLoS ONE 8, e77943 (2013)CrossRefADSGoogle Scholar
  10. 10.
    S. Galam, Physica A 238, 66 (1997)CrossRefADSGoogle Scholar
  11. 11.
    S. Galam, A.C.R. Martins, Phys. Rev. E 91, 012108 (2015)CrossRefADSGoogle Scholar
  12. 12.
    I.D. Couzin, Trends Cogn. Sci. 13, 36 (2009)CrossRefGoogle Scholar
  13. 13.
    D.J.T. Sumpter, S.C. Pratt, Phil. Trans. R. Soc. B 364, 743 (2009)CrossRefGoogle Scholar
  14. 14.
    A.J.W. Ward, D.J.T. Sumpter, I.D. Couzin, Proc. Natl. Acad. Sci. 105, 6948 (2008)CrossRefADSGoogle Scholar
  15. 15.
    S. Arganda, A. Pérez-Escudero, G.G. de Polavieja, Proc. Natl. Acad. Sci. 109, 20508 (2012)CrossRefADSGoogle Scholar
  16. 16.
    A.J.W. Ward, J.E. Herbert-Read, D.J.T. Sumpter, J. Krause, Proc. Natl. Acad. Sci. 108, 2312 (2011)CrossRefADSGoogle Scholar
  17. 17.
    A. Pérez-Escudero, G.G. de Polavieja, PLoS Comput. Biol. 7, e1002282 (2011)CrossRefGoogle Scholar
  18. 18.
    D.J. Watts, Proc. Natl. Acad. Sci. 99, 5766 (2002)CrossRefADSMathSciNetzbMATHGoogle Scholar
  19. 19.
    M. Turalska, M. Lukovic, B.J. West, P. Grigolini, Phys. Rev. E 80, 021110 (2009)CrossRefADSGoogle Scholar
  20. 20.
    Z. Wang, A. Szolnoki, M. Perc, Sci. Rep. 3, 2470 (2013)ADSGoogle Scholar
  21. 21.
    Z. Wang, A. Szolnoki, M. Perc, Sci. Rep. 3, 1183 (2013)ADSGoogle Scholar
  22. 22.
    E. Bonabeau, M. Dorigo, G. Theraulaz, Nature 406, 39 (2000)CrossRefADSGoogle Scholar
  23. 23.
    S. Garnier, J. Gautrais, G. Theraulaz, Swarm Intell. 1, 3 (2007)CrossRefGoogle Scholar
  24. 24.
    F. Vanni, M. Luković, P. Grigolini, Phys. Rev. Lett. 107, 078103 (2011)CrossRefADSGoogle Scholar
  25. 25.
    D. Easley, J. Kleinberg, Networks, Crowds, and Markets: Reasoning About a Highly Connected World (Cambridge University Press, 2010)Google Scholar
  26. 26.
    D.A. Levinthal, Manag. Sci. 43, 934 (1997)CrossRefzbMATHGoogle Scholar
  27. 27.
    R. Katila, G. Ahuja, Acad. Manag. J. 45, 1183 (2002)CrossRefGoogle Scholar
  28. 28.
    C. Loch, J. Mihm, A. Huchzermeier, Concurrent Engineering 11, 187 (2003)CrossRefGoogle Scholar
  29. 29.
    S. Billinger, N. Stieglitz, T.R. Schumacher, Organization Sci. 25, 93 (2014)CrossRefGoogle Scholar
  30. 30.
    M. Turalska, B.J. West, Phys. Rev. E 90, 052815 (2014)CrossRefADSGoogle Scholar
  31. 31.
    L. Conradt, Interface Focus 2, 226 (2012)CrossRefGoogle Scholar
  32. 32.
    P.J. DiMaggio, W.W. Powell, Am. Sociol. Rev. 48, 147 (1983)CrossRefGoogle Scholar
  33. 33.
    C. Castellano, S. Fortunato, V. Loreto, Rev. Mod. Phys. 81, 591 (2009)CrossRefADSGoogle Scholar
  34. 34.
    R.J. Glauber, J. Math. Phys. 4, 294 (1963)CrossRefADSMathSciNetzbMATHGoogle Scholar
  35. 35.
    S. Kauffman, S. Levin, J. Theor. Biol. 128, 11 (1987)CrossRefMathSciNetGoogle Scholar
  36. 36.
    S. Kauffman, E. Weinberger, J. Theor. Biol. 141, 211 (1989)CrossRefGoogle Scholar
  37. 37.
    D. Sornette, Rep. Prog. Phys. 77, 062001 (2014)CrossRefADSMathSciNetGoogle Scholar
  38. 38.
    W. Weidlich, Br. J. Math. Stat. Psychol. 24, 251 (1971)CrossRefzbMATHGoogle Scholar
  39. 39.
    E. Ising, Z. Phys. 31, 253 (1925)CrossRefADSGoogle Scholar
  40. 40.
    S.G. Brush, Rev. Mod. Phys. 39, 883 (1967)CrossRefADSGoogle Scholar
  41. 41.
    W. Weidlich, Phys. Rep. 204, 1 (1991)CrossRefADSMathSciNetzbMATHGoogle Scholar
  42. 42.
    F. Schweitzer, Brownian Agents and Active Particles, Collective Dynamics in the Natural and Social Sciences, Springer Series in Synergetics − Springer Complexity (Springer, Berlin, Heidelberg, New York, 2007)Google Scholar
  43. 43.
    D. Gruènbaum, Evol. Ecol. 12, 503 (1998)CrossRefGoogle Scholar
  44. 44.
    P.R. Laughlin, E.C. Hatch, J.S. Silver, L. Boh, J. Pers. Soc. Psychol. 90, 644 (2006)CrossRefGoogle Scholar
  45. 45.
    P.R. Laughlin, M.L. Zander, E.M. Knievel, T.K. Tan, J. Pers. Soc. Psychol. 85, 684 (2003)CrossRefGoogle Scholar
  46. 46.
    J.J. Faria, E.A. Codling, J.R.G. Dyer, F. Trillmich, J. Krause, Anim. Behav. 78, 587 (2009)CrossRefGoogle Scholar
  47. 47.
    M. Dorigo, V. Maniezzo, A. Colorni, IEEE Trans. Syst. Man. Cybernet. B 26, 1 (1996)CrossRefGoogle Scholar
  48. 48.
    M. Dorigo, L.M. Gambardella, BioSystems 43, 73 (1997)CrossRefGoogle Scholar
  49. 49.
    J. Kennedy, R. Eberhart, in Proceedings of IEEE International Conference on Neural Networks, 1995, Vol. 4, pp. 1942−1948Google Scholar
  50. 50.
    D. Karaboga, B. Basturk, J. Global Optim. 39, 459 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  51. 51.
    X. Li, Z. Shao, J. Qian, Eng. Theor. Practice 22, 32 (2002)Google Scholar
  52. 52.
    E.D. Weinberger, Santa Fe Institute working paper: 1996-02-003, http://www.santafe.edu/media/workingpapers/96-02-003.pdf (1996)
  53. 53.
    M. De Domenico, A. Solé-Ribalta, E. Cozzo, M. Kivelä, Y. Moreno, M.A. Porter, S. Gómez, A. Arenas, Phys. Rev. X 3, 041022 (2013)Google Scholar
  54. 54.
    K.M. Lee, B. Min, K. Goh, Eur. Phys. J. B 88, 48 (2015)CrossRefADSGoogle Scholar
  55. 55.
    S. Boccaletti, G. Bianconi, R. Criado, C.I. del Genio, J. Gómez-Gardeñes, M. Romance, I. Sendiña-Nadal, Z. Wang, M. Zanin, Phys. Rep. 544, 1 (2014)CrossRefADSMathSciNetGoogle Scholar
  56. 56.
    Z. Wang, L. Wang, A. Szolnoki, M. Perc, Eur. Phys. J. B 88, 1 (2015)ADSGoogle Scholar
  57. 57.
    M. Kivelä, A. Arenas, M. Barthelemy, J.P. Gleeson, Y. Moreno, M.A. Porter, J. Complex Networks 2, 203 (2014)CrossRefGoogle Scholar
  58. 58.
    D.T. Gillespie, J. Comput. Phys. 22, 403 (1976)CrossRefADSMathSciNetGoogle Scholar
  59. 59.
    D.T. Gillespie, J. Phys. Chem. 81, 2340 (1977)CrossRefGoogle Scholar
  60. 60.
    T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, O. Shochet, Phys. Rev. Lett. 75, 1226 (1995)CrossRefADSGoogle Scholar
  61. 61.
    T. Vicseka, A. Zafeirisa, Phys. Rep. 517, 71 (2012)CrossRefADSGoogle Scholar
  62. 62.
    L. Barnett, J.T. Lizier, M. Harré, A.K. Seth, T. Bossomaier, Phys. Rev. Lett. 111, 177203 (2013)CrossRefADSGoogle Scholar
  63. 63.
    O. Kinouchi, M. Copelli, Nat. Phys. 2, 348 (2006)CrossRefGoogle Scholar
  64. 64.
    T. Mora, W. Bialek, J. Stat. Phys. 144, 268 (2011)CrossRefADSMathSciNetzbMATHGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Mechanics Mathematics and ManagementBariItaly
  2. 2.Physics Department M. Merlin, CNR Institute for Photonics and Nanotechnologies U.O.S. BariBariItaly

Personalised recommendations