Advertisement

Model of human collective decision-making in complex environments

Abstract

A continuous-time Markov process is proposed to analyze how a group of humans solves a complex task, consisting in the search of the optimal set of decisions on a fitness landscape. Individuals change their opinions driven by two different forces: (i) the self-interest, which pushes them to increase their own fitness values, and (ii) the social interactions, which push individuals to reduce the diversity of their opinions in order to reach consensus. Results show that the performance of the group is strongly affected by the strength of social interactions and by the level of knowledge of the individuals. Increasing the strength of social interactions improves the performance of the team. However, too strong social interactions slow down the search of the optimal solution and worsen the performance of the group. In particular, we find that the threshold value of the social interaction strength, which leads to the emergence of a superior intelligence of the group, is just the critical threshold at which the consensus among the members sets in. We also prove that a moderate level of knowledge is already enough to guarantee high performance of the group in making decisions.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

References

  1. 1.

    L. Conradt, T.J. Roper, Nature 421, 155 (2003)

  2. 2.

    I.D. Couzin, J. Krause, N.R. Franks, S.A. Levin, Nature 433, 513 (2005)

  3. 3.

    M.J.B. Krieger, J.-B. Billeter, L. Keller, Nature 406, 992 (2000)

  4. 4.

    M. Rubenstein, A. Cornejo, R. Nagpal, Science 345, 795 (2014)

  5. 5.

    J. Werfel, K. Petersen, R. Nagpal, Science 343, 754 (2014)

  6. 6.

    M. Brambilla, E. Ferrante, M. Birattari, M. Dorigo, Swarm Intell. 7, 1 (2013)

  7. 7.

    C.H. Lee, A. Lucas, Phys. Rev. E 90, 052804 (2014)

  8. 8.

    C.D. Brummitt, S. Chatterjee, P.S. Dey, D. Sivakoff, Ann. Appl. Probab. 25, 2013 (2015)

  9. 9.

    R.J.G. Clément, S. Krause, N. von Engelhardt, J.J. Faria, J. Krause, R.H.J.M. Kurvers, PLoS ONE 8, e77943 (2013)

  10. 10.

    S. Galam, Physica A 238, 66 (1997)

  11. 11.

    S. Galam, A.C.R. Martins, Phys. Rev. E 91, 012108 (2015)

  12. 12.

    I.D. Couzin, Trends Cogn. Sci. 13, 36 (2009)

  13. 13.

    D.J.T. Sumpter, S.C. Pratt, Phil. Trans. R. Soc. B 364, 743 (2009)

  14. 14.

    A.J.W. Ward, D.J.T. Sumpter, I.D. Couzin, Proc. Natl. Acad. Sci. 105, 6948 (2008)

  15. 15.

    S. Arganda, A. Pérez-Escudero, G.G. de Polavieja, Proc. Natl. Acad. Sci. 109, 20508 (2012)

  16. 16.

    A.J.W. Ward, J.E. Herbert-Read, D.J.T. Sumpter, J. Krause, Proc. Natl. Acad. Sci. 108, 2312 (2011)

  17. 17.

    A. Pérez-Escudero, G.G. de Polavieja, PLoS Comput. Biol. 7, e1002282 (2011)

  18. 18.

    D.J. Watts, Proc. Natl. Acad. Sci. 99, 5766 (2002)

  19. 19.

    M. Turalska, M. Lukovic, B.J. West, P. Grigolini, Phys. Rev. E 80, 021110 (2009)

  20. 20.

    Z. Wang, A. Szolnoki, M. Perc, Sci. Rep. 3, 2470 (2013)

  21. 21.

    Z. Wang, A. Szolnoki, M. Perc, Sci. Rep. 3, 1183 (2013)

  22. 22.

    E. Bonabeau, M. Dorigo, G. Theraulaz, Nature 406, 39 (2000)

  23. 23.

    S. Garnier, J. Gautrais, G. Theraulaz, Swarm Intell. 1, 3 (2007)

  24. 24.

    F. Vanni, M. Luković, P. Grigolini, Phys. Rev. Lett. 107, 078103 (2011)

  25. 25.

    D. Easley, J. Kleinberg, Networks, Crowds, and Markets: Reasoning About a Highly Connected World (Cambridge University Press, 2010)

  26. 26.

    D.A. Levinthal, Manag. Sci. 43, 934 (1997)

  27. 27.

    R. Katila, G. Ahuja, Acad. Manag. J. 45, 1183 (2002)

  28. 28.

    C. Loch, J. Mihm, A. Huchzermeier, Concurrent Engineering 11, 187 (2003)

  29. 29.

    S. Billinger, N. Stieglitz, T.R. Schumacher, Organization Sci. 25, 93 (2014)

  30. 30.

    M. Turalska, B.J. West, Phys. Rev. E 90, 052815 (2014)

  31. 31.

    L. Conradt, Interface Focus 2, 226 (2012)

  32. 32.

    P.J. DiMaggio, W.W. Powell, Am. Sociol. Rev. 48, 147 (1983)

  33. 33.

    C. Castellano, S. Fortunato, V. Loreto, Rev. Mod. Phys. 81, 591 (2009)

  34. 34.

    R.J. Glauber, J. Math. Phys. 4, 294 (1963)

  35. 35.

    S. Kauffman, S. Levin, J. Theor. Biol. 128, 11 (1987)

  36. 36.

    S. Kauffman, E. Weinberger, J. Theor. Biol. 141, 211 (1989)

  37. 37.

    D. Sornette, Rep. Prog. Phys. 77, 062001 (2014)

  38. 38.

    W. Weidlich, Br. J. Math. Stat. Psychol. 24, 251 (1971)

  39. 39.

    E. Ising, Z. Phys. 31, 253 (1925)

  40. 40.

    S.G. Brush, Rev. Mod. Phys. 39, 883 (1967)

  41. 41.

    W. Weidlich, Phys. Rep. 204, 1 (1991)

  42. 42.

    F. Schweitzer, Brownian Agents and Active Particles, Collective Dynamics in the Natural and Social Sciences, Springer Series in Synergetics − Springer Complexity (Springer, Berlin, Heidelberg, New York, 2007)

  43. 43.

    D. Gruènbaum, Evol. Ecol. 12, 503 (1998)

  44. 44.

    P.R. Laughlin, E.C. Hatch, J.S. Silver, L. Boh, J. Pers. Soc. Psychol. 90, 644 (2006)

  45. 45.

    P.R. Laughlin, M.L. Zander, E.M. Knievel, T.K. Tan, J. Pers. Soc. Psychol. 85, 684 (2003)

  46. 46.

    J.J. Faria, E.A. Codling, J.R.G. Dyer, F. Trillmich, J. Krause, Anim. Behav. 78, 587 (2009)

  47. 47.

    M. Dorigo, V. Maniezzo, A. Colorni, IEEE Trans. Syst. Man. Cybernet. B 26, 1 (1996)

  48. 48.

    M. Dorigo, L.M. Gambardella, BioSystems 43, 73 (1997)

  49. 49.

    J. Kennedy, R. Eberhart, in Proceedings of IEEE International Conference on Neural Networks, 1995, Vol. 4, pp. 1942−1948

  50. 50.

    D. Karaboga, B. Basturk, J. Global Optim. 39, 459 (2007)

  51. 51.

    X. Li, Z. Shao, J. Qian, Eng. Theor. Practice 22, 32 (2002)

  52. 52.

    E.D. Weinberger, Santa Fe Institute working paper: 1996-02-003, http://www.santafe.edu/media/workingpapers/96-02-003.pdf (1996)

  53. 53.

    M. De Domenico, A. Solé-Ribalta, E. Cozzo, M. Kivelä, Y. Moreno, M.A. Porter, S. Gómez, A. Arenas, Phys. Rev. X 3, 041022 (2013)

  54. 54.

    K.M. Lee, B. Min, K. Goh, Eur. Phys. J. B 88, 48 (2015)

  55. 55.

    S. Boccaletti, G. Bianconi, R. Criado, C.I. del Genio, J. Gómez-Gardeñes, M. Romance, I. Sendiña-Nadal, Z. Wang, M. Zanin, Phys. Rep. 544, 1 (2014)

  56. 56.

    Z. Wang, L. Wang, A. Szolnoki, M. Perc, Eur. Phys. J. B 88, 1 (2015)

  57. 57.

    M. Kivelä, A. Arenas, M. Barthelemy, J.P. Gleeson, Y. Moreno, M.A. Porter, J. Complex Networks 2, 203 (2014)

  58. 58.

    D.T. Gillespie, J. Comput. Phys. 22, 403 (1976)

  59. 59.

    D.T. Gillespie, J. Phys. Chem. 81, 2340 (1977)

  60. 60.

    T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, O. Shochet, Phys. Rev. Lett. 75, 1226 (1995)

  61. 61.

    T. Vicseka, A. Zafeirisa, Phys. Rep. 517, 71 (2012)

  62. 62.

    L. Barnett, J.T. Lizier, M. Harré, A.K. Seth, T. Bossomaier, Phys. Rev. Lett. 111, 177203 (2013)

  63. 63.

    O. Kinouchi, M. Copelli, Nat. Phys. 2, 348 (2006)

  64. 64.

    T. Mora, W. Bialek, J. Stat. Phys. 144, 268 (2011)

Download references

Author information

Correspondence to Giuseppe Carbone.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Carbone, G., Giannoccaro, I. Model of human collective decision-making in complex environments. Eur. Phys. J. B 88, 339 (2015). https://doi.org/10.1140/epjb/e2015-60609-0

Download citation

Keywords

  • Statistical and Nonlinear Physics