Advertisement

Coevolution of information processing and topology in hierarchical adaptive random Boolean networks

  • Piotr J. Górski
  • Agnieszka Czaplicka
  • Janusz A. Hołyst
Open Access
Regular Article

Abstract

Random Boolean Networks (RBNs) are frequently used for modeling complex systems driven by information processing, e.g. for gene regulatory networks (GRNs). Here we propose a hierarchical adaptive random Boolean Network (HARBN) as a system consisting of distinct adaptive RBNs (ARBNs) – subnetworks – connected by a set of permanent interlinks. We investigate mean node information, mean edge information as well as mean node degree. Information measures and internal subnetworks topology of HARBN coevolve and reach steady-states that are specific for a given network structure. The main natural feature of ARBNs, i.e. their adaptability, is preserved in HARBNs and they evolve towards critical configurations which is documented by power law distributions of network attractor lengths. The mean information processed by a single node or a single link increases with the number of interlinks added to the system. The mean length of network attractors and the mean steady-state connectivity possess minima for certain specific values of the quotient between the density of interlinks and the density of all links in networks. It means that the modular network displays extremal values of its observables when subnetworks are connected with a density a few times lower than a mean density of all links.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    C. Gershenson, Introduction to Random Boolean Networks, in Workshop and Tutorial Proceedings, Ninth International Conference on the Simulation and Synthesis of Living Systems (ALife IX, 2004), pp. 160–173 Google Scholar
  2. 2.
    B. Drossel, Rev. Nonlinear Dyn. Complex. 1, 69 (2008)CrossRefGoogle Scholar
  3. 3.
    D. Cheng, H. Qi, Z. Li, in Analysis and control of Boolean networks: a semi-tensor product approach (Springer, London, 2011), pp. 431–450Google Scholar
  4. 4.
    M. Aldana, S. Coppersmith, L.P. Kadanoff, in Perspectives and Problems in Nonlinear Science (Springer, 2003), pp. 23−89Google Scholar
  5. 5.
    L.D.F. Costa, F.A. Rodrigues, A.S. Cristino, Genet. Mol. Biol. 31, 591 (2008)CrossRefGoogle Scholar
  6. 6.
    S.A. Kauffman, J. Theor. Biol. 22, 437 (1969)CrossRefMathSciNetGoogle Scholar
  7. 7.
    S. Kauffman, Physica A 340, 733 (2004) CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    L.T. MacNeil, A.J. Walhout, Genome Res. 21, 645 (2011)CrossRefGoogle Scholar
  9. 9.
    R. Jothi, S. Balaji, A. Wuster, J.A. Grochow, J. Gsponer, T.M. Przytycka, L. Aravind, M.M. Babu, Mol. Syst. Biol. 5, 294 (2009)CrossRefGoogle Scholar
  10. 10.
    N.M. Luscombe, M.M. Babu, H. Yu, M. Snyder, S.A. Teichmann, M. Gerstein, Nature 431, 308 (2004) CrossRefADSGoogle Scholar
  11. 11.
    T. Rohlf, S. Bornholdt, in Adaptive Networks (Springer, 2009), pp. 73–106Google Scholar
  12. 12.
    P. Bak, K. Sneppen, Phys. Rev. Lett. 71, 4083 (1993) CrossRefADSGoogle Scholar
  13. 13.
    R.V. Solé, S.C. Manrubia, Phys. Rev. E 54, R42 (1996)CrossRefADSGoogle Scholar
  14. 14.
    S. Jain, S. Krishna, Phys. Rev. Lett. 81, 5684 (1998) CrossRefADSGoogle Scholar
  15. 15.
    S. Jain, S. Krishna, Proc. Natl. Acad. Sci. 99, 2055 (2002) CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    M.G. Zimmermann, V.M. Eguíluz, M. San Miguel, Phys. Rev. E 69, 065102 (2004) CrossRefADSGoogle Scholar
  17. 17.
    P. Klimek, S. Thurner, R. Hanel, J. Theor. Biol. 256, 142 (2009) CrossRefMathSciNetGoogle Scholar
  18. 18.
    S. Thurner, P. Klimek, R. Hanel, New J. Phys. 12, 075029 (2010) CrossRefADSGoogle Scholar
  19. 19.
    M.D. König, C.J. Tessone, Phys. Rev. E 84, 056108 (2011) CrossRefADSGoogle Scholar
  20. 20.
    Y.P. Gunji, T. Sakiyama, H. Murakami, Biosystems 123, 99 (2014)CrossRefGoogle Scholar
  21. 21.
    S. Bornholdt, T. Rohlf, Phys. Rev. Lett. 84, 6114 (2000) CrossRefADSGoogle Scholar
  22. 22.
    M. Liu, K.E. Bassler, Phys. Rev. E 74, 041910 (2006) CrossRefADSGoogle Scholar
  23. 23.
    T. Haruna, S. Tanaka, On the Relationship between Local Rewiring Rules and Stationary Out-degree Distributions in Adaptive Random Boolean Network Models, in ALIFE 14: The Fourteenth Conference on the Synthesis and Simulation of Living Systems (2014), Vol. 14, pp. 420–426Google Scholar
  24. 24.
    P.M.C. de Oliveira, Theory in Biosciences 120, 1 (2001)CrossRefGoogle Scholar
  25. 25.
    Hierarchy in natural and social sciences, edited by D. Pumain, Vol. 3 of Methodos series (Springer, Dordrecht, 2006), http://opac.inria.fr/record=b1123148
  26. 26.
    A. Czaplicka, J.A. Holyst, P.M. Sloot, Sci. Rep. 3, 1223 (2013)CrossRefADSGoogle Scholar
  27. 27.
    A. Czaplicka, J.A. Hołyst, P.M. Sloot, Eur. Phys. J.: Special Topics 222, 1335 (2013) ADSGoogle Scholar
  28. 28.
    A. Czaplicka, K. Suchecki, B. Minano, M. Trias, J.A. Hołyst, Phys. Rev. E 89, 062810 (2014) CrossRefADSGoogle Scholar
  29. 29.
    U. Bastolla, G. Parisi, Physica D 115, 219 (1998) CrossRefADSzbMATHGoogle Scholar
  30. 30.
    R. Poblanno-Balp, C. Gershenson, Artif. Life 17, 331 (2011)CrossRefGoogle Scholar
  31. 31.
    K. Suchecki, J.A. Hołyst, Phys. Rev. E 74, 011122 (2006) CrossRefADSMathSciNetGoogle Scholar
  32. 32.
    K. Suchecki, J.A. Hołyst, Phys. Rev. E 80, 031110 (2009) CrossRefADSGoogle Scholar
  33. 33.
    P. Csermely, Trends Biochem. Sci. 29, 331 (2004)CrossRefGoogle Scholar
  34. 34.
    P. Csermely, in Weak Links (Springer, 2009), pp. 101–116Google Scholar
  35. 35.
    B. Luque, A. Ferrera, Complex Systems 12, 241 (2000)Google Scholar
  36. 36.
    P. Rämö, S. Kauffman, J. Kesseli, O. Yli-Harja, Physica D 227, 100 (2007) CrossRefADSMathSciNetzbMATHGoogle Scholar
  37. 37.
    P. Krawitz, I. Shmulevich, Phys. Rev. Lett. 98, 158701 (2007) CrossRefADSGoogle Scholar
  38. 38.
    A.S. Ribeiro, S.A. Kauffman, J. Lloyd-Price, B. Samuelsson, J.E. Socolar, Phys. Rev. E 77, 011901 (2008) CrossRefADSMathSciNetGoogle Scholar
  39. 39.
    J.T. Lizier, S. Pritam, M. Prokopenko, Artif. Life 17, 293 (2011)CrossRefGoogle Scholar
  40. 40.
    D. Snyder, A. Goudarzi, C. Teuscher, Phys. Rev. E 87, 042808 (2013) CrossRefADSGoogle Scholar
  41. 41.
    M.E. Gáspár, P. Csermely, Briefings Funct. Genomics 11, 443 (2012)CrossRefGoogle Scholar
  42. 42.
    P. Holme, M.E. Newman, Phys. Rev. E 74, 056108 (2006) CrossRefADSGoogle Scholar
  43. 43.
    A. Clauset, C.R. Shalizi, M.E. Newman, SIAM Rev. 51, 661 (2009)CrossRefADSMathSciNetzbMATHGoogle Scholar
  44. 44.
    T.B. Kirkwood, Biometrics 35, 908 (1979)Google Scholar

Copyright information

© The Author(s) 2016

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • Piotr J. Górski
    • 1
  • Agnieszka Czaplicka
    • 2
  • Janusz A. Hołyst
    • 1
    • 3
  1. 1.Faculty of Physics, Center of Excellence for Complex Systems Research, Warsaw University of TechnologyWarsawPoland
  2. 2.Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB)Palma de MallorcaSpain
  3. 3.ITMO UniversitySaint PetersburgRussia

Personalised recommendations