Dissortativity and duplications in oral cancer

  • Pramod Shinde
  • Alok Yadav
  • Aparna Rai
  • Sarika Jalan
Regular Article

Abstract

More than 300 000 new cases worldwide are being diagnosed with oral cancer annually. Complexity of oral cancer renders designing drug targets very difficult. We analyse protein-protein interaction network for the normal and oral cancer tissue and detect crucial changes in the structural properties of the networks in terms of the interactions of the hub proteins and the degree-degree correlations. Further analysis of the spectra of both the networks, while exhibiting universal statistical behaviour, manifest distinction in terms of the zero degeneracy, providing insight to the complexity of the underlying system.

Keywords

Statistical and Nonlinear Physics 

Supplementary material

10051_2015_1675_MOESM1_ESM.pdf (134 kb)
Supplementary material, approximately 133 KB.

References

  1. 1.
    World Health Organization, International Classification of Diseases 10th Revision, Accessed on Jan. 20, 2015 (2010) Google Scholar
  2. 2.
    Cancer Research UK. Oral cancer incidence statistics, http://www.cancerresearchuk.org/cancer-info/ cancerstats/types/oral/incidence/uk-oral-cancer- incidence-statistics, Accessed on Jan. 20, 2015 (2012)
  3. 3.
    K.R. Coelho, J. Cancer Epidemiol. 2012, 701932 (2012) CrossRefGoogle Scholar
  4. 4.
    R. Sankaranarayanan, K. Ramadas, G. Thomas, Lancet 365, 1927 (2005) CrossRefGoogle Scholar
  5. 5.
    Z.U. Khan, Webmed Central Cancer 3, WMC003626 (2012)Google Scholar
  6. 6.
    R. Dikshit, P.C. Gupta, Lancet 379, 1807 (2005) CrossRefGoogle Scholar
  7. 7.
    J. Penninger, D. Schramek, U.S. Patent Application 13/825, 655 (2011), and references thereinGoogle Scholar
  8. 8.
    S. Di Franco, P. Mancuso, A. Benfante, M. Spina, F. Iovino, F. Dieli, M. Todaro, Cancers 3, 1957 (2011)CrossRefGoogle Scholar
  9. 9.
    B. Coiffier, J. Clin. Oncol. Res. 23, 6387 (2005) CrossRefGoogle Scholar
  10. 10.
    National Institute of Cancer. http://www.cancer.gov/cancertopics/druginfo/drug-page-index, Accessed on 26th January (2015)
  11. 11.
    G. Calixto, J. Bernegossi, B. Fonseca-Santos, M. Chorilli, Int. J. Nanomedicine 9, 3719 (2014)CrossRefGoogle Scholar
  12. 12.
    S. Hu, M. Arellano, P. Boontheung, J. Wang, H. Zhou, J. Jiang, D.T. Wong, Clin. Cancer Res. 14, 6246 (2008) CrossRefGoogle Scholar
  13. 13.
    N.S. Gadewal, S.M. Zingde, Bioinformation 6, 169 (2011)CrossRefGoogle Scholar
  14. 14.
    R. Albert, A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002)ADSCrossRefMATHGoogle Scholar
  15. 15.
    A.-L. Barabasi, Z.N. Oltvai, Nat. Rev. Genet. 5, 2 (2004)CrossRefGoogle Scholar
  16. 16.
    K.I. Goh et al., Proc. Natl. Acad. Sci. USA 104, 21 (2007)CrossRefGoogle Scholar
  17. 17.
    J.J. Hornberg, F.J. Bruggeman, H.V. Westerhoff, J. Lankelma, Biosystems 83, 81 (2006)CrossRefGoogle Scholar
  18. 18.
    S. Mitra, S. Das, S. Das, S. Ghosal, Oral Oncol. 48, 2 (2012)CrossRefGoogle Scholar
  19. 19.
    C.H. Wu, R. Apweiler, A. Bairoch, Nucleic Acids Res. 34, PMC1347523 (2006)CrossRefGoogle Scholar
  20. 20.
    M. Molloy, B. Reed, Random Struct. Algorithms 6, 161 (1995)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    M. Newman, Comput. Phys. Commun. 147, 40 (2002)ADSCrossRefMATHGoogle Scholar
  22. 22.
    R. Albert, H. Jeong, A.L. Barabasi, Nature 401, 130 (1999) ADSCrossRefGoogle Scholar
  23. 23.
    M.T. Rivera, S.B. Soderstrom, B. Uzzi, Ann. Rev. Sociol. 36, 91 (2010)CrossRefGoogle Scholar
  24. 24.
    A. Yadav, S. Jalan, Chaos 25, 043110 (2015) ADSCrossRefGoogle Scholar
  25. 25.
    H. Kitano, Nat. Rev. Genet. 5, 826 (2004), and references thereinCrossRefGoogle Scholar
  26. 26.
    I. Ispolatov, P.L. Krapivsky, A. Yuryev, Phys. Rev. E 71, 1 (2005)CrossRefGoogle Scholar
  27. 27.
    P.V. Meighem, Graph Spectra for Complex Networks (Cambridge University Press, Cambridge, 2011)Google Scholar
  28. 28.
    G.H. Golub, C.F. Van Loan, in Matrix computations (JHU Press, 2012), Vol. 3Google Scholar
  29. 29.
    D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998) ADSCrossRefGoogle Scholar
  30. 30.
    L.M. Iakoucheva, C.J. Brown, J.D. Lawson, Z. Obradovi, A.K. Dunker, J. Mol. Biol. 323, 573 (2002) CrossRefGoogle Scholar
  31. 31.
    A.L. Barabasi, Linked: The New Science of Networks (Perseus Publishing, Cambridge, 2002)Google Scholar
  32. 32.
    A. Clauset, C.R. Shalizi, M.E.J. Newman, SIAM Rev. 4, 51 (2009)MathSciNetGoogle Scholar
  33. 33.
    M. Hsing, Nat. Biotechnol. 30, 842 (2000)Google Scholar
  34. 34.
    H.M. Berman et al., Nucleic Acids Res. 28, 235 (2000)ADSCrossRefGoogle Scholar
  35. 35.
    P.F. Jonsson, P.A. Bates, Bioinformatics 22, 18 (2006)CrossRefGoogle Scholar
  36. 36.
    B.M. Kessler, Curr. Opin. Chem. Biol. 17, 59 (2013)CrossRefGoogle Scholar
  37. 37.
    K. Haglund, I. Dikic, Protein Degrad. 4, 1 (2007)CrossRefGoogle Scholar
  38. 38.
    Th. Shpitzer, G. Bahar, R. Feinmesser, R.M. Nagler, J. Cancer Res. Clin. Oncol. 133, 613 (2007) CrossRefGoogle Scholar
  39. 39.
    R. Nagler et al., Biophys. Acta 1802, 454 (2010) Google Scholar
  40. 40.
    S. Mukherjee, S.K. Das, Curr. Mol. Med. 12, 443 (2012)Google Scholar
  41. 41.
    A. Force, M. Lynch, F.B. Pickett, A. Amores, Y.L. Yan, J. Postlethwait, Genetics 151, 1531 (1999) Google Scholar
  42. 42.
    M.E.J. Newman, S.H. Strogatz, D.J. Watts, Phys. Rev. E 64, 026118 (2001) ADSCrossRefGoogle Scholar
  43. 43.
    M. de Aguiar, Y. Bar-Yam, Phys. Rev. E 71, 016106 (2005) ADSCrossRefGoogle Scholar
  44. 44.
    J. Zhang, Trends Ecol. Evol. 18, 292 (2003)CrossRefGoogle Scholar
  45. 45.
    M.A. Nowak, M.C. Boerlijst, J. Cooke, J.M. Smith, Nature 388, 167 (1997) ADSCrossRefGoogle Scholar
  46. 46.
    S.A. Frank, Curr. Biol. 23, R343 (2013) CrossRefGoogle Scholar
  47. 47.
    S. Richardson, R. Sandra, C. Salvador-Palomeque, G.J. Faulkner, BioEssays 36, 475 (2014)CrossRefGoogle Scholar
  48. 48.
    J.A. Bailey, Z. Gu, R.A. Clark, K. Reinert, R.V. Samonte, S. Schwartz, E.E. Eichler, Science 297, 1003 (2002) ADSCrossRefGoogle Scholar
  49. 49.
    P. Creixell, E.M. Schoof, J.T. Erler, R. Linding, Nat. Biotechnol. 30, 842 (2012)CrossRefGoogle Scholar
  50. 50.
    I.J. Farkas, I. Derenyi, A.-L. Barabási, T. Vicsek, Phys. Rev. E 64, 026704 (2001) ADSCrossRefGoogle Scholar
  51. 51.
    G. Kar, A. Gursoy, O. Keskin, PLoS Comput. Biol. 5, e1000601 (2009) ADSCrossRefGoogle Scholar
  52. 52.
    M.E.J. Newman, J. Park, Phys. Rev. E 68, 036122 (2003) ADSCrossRefGoogle Scholar
  53. 53.
    D. Lusseau, M.E.J. Newman, Proc. R. Soc. London B 271, S477 (2004) CrossRefGoogle Scholar
  54. 54.
    D.A. Pechenick, J.L. Payne, J.H. Moore, PLoS Comput. Biol. 10, e1003780 (2014) ADSCrossRefGoogle Scholar
  55. 55.
    M. Dean, T. Fojo, S. Bates, Nat. Rev. Cancer 5, 275 (2005)CrossRefGoogle Scholar
  56. 56.
    M.M. Gottesman, Ann. Rev. Med. 53, 615 (2002)CrossRefGoogle Scholar
  57. 57.
    S. Patel, J. Shah, CA Cancer J. Clin. 55, 242 (2005)CrossRefGoogle Scholar
  58. 58.
    P. Hansen, B. Floderus, K. Frederiksen, C. Johansen, Cancer 103, 1082 (2005) CrossRefGoogle Scholar
  59. 59.
    Q. Tian, N. Price, L. Hood, J. Int. Med. 271, 111 (2012) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Pramod Shinde
    • 1
  • Alok Yadav
    • 2
  • Aparna Rai
    • 1
  • Sarika Jalan
    • 1
    • 2
  1. 1.Centre for Biosciences and Biomedical EngineeringIndian Institute of Technology IndoreIndoreIndia
  2. 2.Complex Systems Lab, Discipline of PhysicsIndian Institute of Technology IndoreIndoreIndia

Personalised recommendations