Interfacial adsorption in Potts models on the square lattice

  • Nikolaos G. Fytas
  • Anastasios Malakis
  • Walter Selke
  • Lev N. Shchur
Regular Article

Abstract

We study the effect of interfacial phenomena in two-dimensional perfect and random (or disordered) q-state Potts models with continuous phase transitions, using, mainly, Monte Carlo techniques. In particular, for the total interfacial adsorption, the critical behavior, including corrections to scaling, are analyzed. The role of randomness is scrutinized. Results are discussed applying scaling arguments and invoking findings for bulk critical properties. In all studied cases, i.e., q = 3, 4, and q = 8, the spread of the interfacial adsorption profiles is observed to increase linearly with the lattice size at the bulk transition point.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    D.B. Abraham, in Phase Transitions and Critical Phenomena, edited by C. Domb, J.L. Lebowitz (Academic Press, New York, 1986), Vol. 10Google Scholar
  2. 2.
    S. Dietrich, in Phase Transitions and Critical Phenomena, edited by C. Domb, J.L. Lebowitz (Academic Press, New York, 1988), Vol. 12Google Scholar
  3. 3.
    W. Selke, W. Pesch, Z. Phys. B 47, 335 (1982)ADSCrossRefGoogle Scholar
  4. 4.
    W. Selke, D.A. Huse, Z. Phys. B 50, 113 (1983)ADSCrossRefGoogle Scholar
  5. 5.
    M.E. Fisher, J. Stat. Phys. 34, 667 (1984)ADSCrossRefMATHGoogle Scholar
  6. 6.
    W. Selke, J.M. Yeomans, J. Phys. A 16, 2789 (1983)ADSCrossRefGoogle Scholar
  7. 7.
    W. Selke, D.A. Huse, D.M. Kroll, J. Phys. A 17, 3019 (1984)ADSCrossRefGoogle Scholar
  8. 8.
    A. Yamagata, K. Kasano, Z. Phys. B 87, 219 (1992)ADSCrossRefGoogle Scholar
  9. 9.
    E. Carlon, F. Igloi, W. Selke, F. Szalma, J. Stat. Phys. 96, 531 (1999)MathSciNetADSCrossRefMATHGoogle Scholar
  10. 10.
    E.V. Albano, K. Binder, Phys. Rev. E 85, 061601 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    N.G. Fytas, W. Selke, Eur. Phys. J. B 86, 365 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    M.L. Trobo, E.V. Albano, Eur. Phys. J. B 87, 303 (2014)MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    E.V. Albano, K. Binder, J. Stat. Phys. 157, 436 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    J. Bricmont, J.L. Lebowitz, J. Stat. Phys. 46, 1015 (1987)MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    A. Messager, S. Miracle-Sole, J. Ruiz, S. Shlosman, Commun. Math. Phys. 140, 275 (1991)MathSciNetADSCrossRefMATHGoogle Scholar
  16. 16.
    J. Cardy, Nucl. Phys. B 565, 506 (2000)MathSciNetADSCrossRefMATHGoogle Scholar
  17. 17.
    G. Delfino, A. Squarcini, Ann. Phys. 342, 171 (2014)MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    F.Y. Wu, Rev. Mod. Phys. 54, 235 (1982)ADSCrossRefGoogle Scholar
  19. 19.
    W. Kinzel, E. Domany, Phys. Rev. B 23, 3421 (1981)MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    B. Berche, C. Chatelain, in Order, Disorder, and Criticality: Advanced Problems of Phase Transition Theory, edited by Y. Holovatch (World Scientific, Singapore, 2004), Vol. 1, pp. 147–199Google Scholar
  21. 21.
    C. Monthus, T. Garel, Phys. Rev. B 77, 134416 (2008)MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    A. Brener, Diploma Thesis, RWTH Aachen University, 2010Google Scholar
  23. 23.
    D.P. Landau, K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics (University Press, Cambridge, 2005)Google Scholar
  24. 24.
    A. Gamsa, J. Cardy, J. Stat. Mech. 2007, P08020 (2007)MathSciNetCrossRefGoogle Scholar
  25. 25.
    S. Chen, A.M. Ferrenberg, D.P. Landau, Phys. Rev. E 52, 1377 (1994)ADSCrossRefGoogle Scholar
  26. 26.
    J. Cardy, J.L. Jacobsen, Phys. Rev. Lett. 79, 4063 (1997)MathSciNetADSCrossRefMATHGoogle Scholar
  27. 27.
    C. Chatelain, B. Berche, Phys. Rev. Lett 80, 1670 (1997)ADSCrossRefGoogle Scholar
  28. 28.
    G. Palagyi, C. Chatelain, B. Berche, F. Igloi, Eur. Phys. J. B 13, 357 (1999)ADSGoogle Scholar
  29. 29.
    J.L. Jacobsen, M. Picco, Phys. Rev. E 61, R13(R) (2000)ADSCrossRefGoogle Scholar
  30. 30.
    Vl.S. Dotsenko, V.A. Fateev, Nucl. Phys. B 240, 312 (1984)MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    V. Privman, P.C. Hohenberg, A. Aharony, in Phase Transitions and Critical Phenomena, edited by C. Domb, J.L. Lebowitz (Academic Press, New York, 1991), Vol. 14, p. 1Google Scholar
  32. 32.
    L.N. Shchur, B. Berche, P. Butera, Phys. Rev. B 77, 144410 (2008)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Nikolaos G. Fytas
    • 1
  • Anastasios Malakis
    • 1
    • 2
  • Walter Selke
    • 3
  • Lev N. Shchur
    • 4
  1. 1.Applied Mathematics Research CentreCoventry UniversityCoventryUK
  2. 2.Department of Physics, Section of Solid State PhysicsUniversity of AthensZografouGreece
  3. 3.Institut für Theoretische Physik and JARA-HPCRWTH Aachen UniversityAachenGermany
  4. 4.Landau Institute for Theoretical PhysicsChernogolovkaRussia

Personalised recommendations