Skip to main content
Log in

Clustering and phase synchronization in populations of coupled phase oscillators

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In many species daily rhythms are endogenously generated by groups of coupled neurons that play the role of a circadian pacemaker. The adaptation of the circadian clock to environmental and seasonal changes has been proposed to be regulated by a dual oscillator system. In order to gain insight into this model, we analyzed the synchronization properties of two fully coupled groups of Kuramoto oscillators. Each group has an internal coupling parameter and the interaction between the two groups can be controlled by two parameters allowing for symmetric or non-symmetric coupling. We show that even for such a simple model counterintuitive behaviours take place, such as a global decrease in synchrony when the coupling between the groups is increased. Through a detailed analysis of the local synchronization processes we explain this behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clocks and Rhythms, in Cold Spring Harbor Symposia on Quantitative Biology (Cold Spring Harbor Laboratory Press, 2008), Vol. 72

  2. S. Daan, C.S. Pittendrigh, J. Comp. Physiol. 106, 253 (1976)

    Article  Google Scholar 

  3. C. Helfrich-Förster, J. Biol. Rhythms 24, 259 (2009)

    Article  Google Scholar 

  4. V. Sheeba, M. Kaneko, V. Sharma, T. Holmes, Crit. Rev. Biochem. Mol. Biol. 43, 37 (2008)

    Article  Google Scholar 

  5. D. Stoleru, Y. Peng, J. Agosto, M. Rosbash, Nature 431, 862 (2004)

    Article  ADS  Google Scholar 

  6. Z. Yao, O.T. Shafer, Science 343, 1516 (2014)

    Article  ADS  Google Scholar 

  7. S. Risau Gusman, P. Gleiser, J. Biol. Rhythms 29, 401 (2014)

    Article  Google Scholar 

  8. M. Hafner, H. Koeppl, D. Gonze, PLoS Comput. Biol. 8, e1002419 (2012)

    Article  ADS  Google Scholar 

  9. Y. Kuramoto, Chemical Oscillations, Waves and Turbulence (Springer, 1984)

  10. T. Winfree, The Geometry of Biological Time, Interdisciplinary Applied Mathematics (Springer, 2001)

  11. A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization. A Universal Concept in Nonlinear Sciences (Cambridge University Press, 2001)

  12. S. Strogatz, Sync. The Emerging Science of Spontaneous Order (Hyperion, 2003)

  13. S. Manrubia, A. Mikhailov, D. Zanette, Emergence of Dynamical Order. Synchronization Phenomena in Complex Systems (World Scientific, 2004)

  14. J. Acebrón, L. Bonilla, C.P. Vicente, F. Ritort, R. Spigler, Rev. Mod. Phys. 77, 137 (2005)

    Article  ADS  Google Scholar 

  15. K. Okuda, Y. Kuramoto, Prog. Theor. Phys. 86, 1159 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  16. E. Montbrió, J. Kurths, B. Blasius, Phys. Rev. E 70, 056125 (2004)

    Article  ADS  Google Scholar 

  17. J. Sheeba, V. Chandrasekar, A. Stefanovska, P. McClintock, Phys. Rev. E 78, 025201 (2008)

    Article  ADS  Google Scholar 

  18. E. Barreto, B. Hunt, E. Ott, P. So, Phys. Rev. E 77, 036107 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  19. D. Abrams, R. Mirollo, S. Strogatz, D. Wiley, Phys. Rev. Lett. 101, 084103 (2008)

    Article  ADS  Google Scholar 

  20. I. Kiss, M. Quigg, S.H. Chun, H. Kori, J. Hudson, Biophys. J. 94, 1121 (2008)

    Article  Google Scholar 

  21. E.A. Martens, E. Barreto, S.H. Strogatz, E. Ott, P. So, T. Antonsen, Phys. Rev. E 79, 026204 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  22. E. Ott, T. Antonsen, Chaos 18, 037113 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  23. I. Kiss, Y. Zhai, J. Hudson, Science 296, 1676 (2002)

    Article  ADS  Google Scholar 

  24. H. Sakaguchi, Prog. Theor. Phys. 79, 39 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  25. J.R. Engelbrecht, R. Mirollo, Phys. Rev. Lett. 109, 034103 (2012)

    Article  ADS  Google Scholar 

  26. D. Pazo, E. Montbrio, Phys. Rev. X 4, 011009 (2014)

    Google Scholar 

  27. A. Mikhailov, D. Zanette, Y. Zhai, I. Kiss, J. Hudson, Proc. Natl. Acad. Sci. 101, 10890 (2004)

    Article  ADS  Google Scholar 

  28. U. Abraham, A. Granada, P. Westermark, M. Heine, A. Kramer, H. Herzel, Mol. Syst. Biol. 6, 438 (2010)

    Article  Google Scholar 

  29. L. Buzna, S. Lozano, A. Díaz-Guilera, Phys. Rev. E 80, 066120 (2009)

    Article  ADS  Google Scholar 

  30. J. Schaap, H. Albus, H.T. vanderLeest, P. Eilers, L. Détári, J. Meijer, Proc. Natl. Acad. Sci. 100, 15994 (2003)

    Article  ADS  Google Scholar 

  31. H. de la Iglesia, J. Meyer, A. Carpino Jr, W. Schwartz, Science 290, 799 (2000)

    Article  ADS  Google Scholar 

  32. D. Li, C. Zhou, Frontiers Syst. Neurosc. 5, 100 (2011)

    Article  Google Scholar 

  33. T. Yoshii, C. Wülbeck, H. Sehadova, S. Veleri, D. Bichler, R. Stanewsky, C. Helfrich-Förster, J. Neurosci. 29, 2597 (2009)

    Article  Google Scholar 

  34. C. Wülbeck, E. Grieshaber, C. Helfrich-Förster, J. Biol. Rhythms 23, 409 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guadalupe Cascallares.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cascallares, G., Gleiser, P. Clustering and phase synchronization in populations of coupled phase oscillators. Eur. Phys. J. B 88, 254 (2015). https://doi.org/10.1140/epjb/e2015-60314-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2015-60314-0

Keywords

Navigation