Evolutionary games on multilayer networks: a colloquium

  • Zhen Wang
  • Lin Wang
  • Attila Szolnoki
  • Matjaž Perc
Colloquium

Abstract

Networks form the backbone of many complex systems, ranging from the Internet to human societies. Accordingly, not only is the range of our interactions limited and thus best described and modeled by networks, it is also a fact that the networks that are an integral part of such models are often interdependent or even interconnected. Networks of networks or multilayer networks are therefore a more apt description of social systems. This colloquium is devoted to evolutionary games on multilayer networks, and in particular to the evolution of cooperation as one of the main pillars of modern human societies. We first give an overview of the most significant conceptual differences between single-layer and multilayer networks, and we provide basic definitions and a classification of the most commonly used terms. Subsequently, we review fascinating and counterintuitive evolutionary outcomes that emerge due to different types of interdependencies between otherwise independent populations. The focus is on coupling through the utilities of players, through the flow of information, as well as through the popularity of different strategies on different network layers. The colloquium highlights the importance of pattern formation and collective behavior for the promotion of cooperation under adverse conditions, as well as the synergies between network science and evolutionary game theory.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    M. Gell-Mann, Eng. Sci. 57, 2 (1988)Google Scholar
  2. 2.
    A.L. Barabási, Nat. Phys. 8, 14 (2012)Google Scholar
  3. 3.
    S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D. Hwang, Phys. Rep. 424, 175 (2006) ADSMathSciNetGoogle Scholar
  4. 4.
    D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998) ADSGoogle Scholar
  5. 5.
    A.L. Barabási, R. Albert, Science 286, 509 (1999) ADSMathSciNetGoogle Scholar
  6. 6.
    R. Albert, A.L. Barabási, Rev. Mod. Phys. 74, 47 (2002)ADSMATHGoogle Scholar
  7. 7.
    M.E.J. Newman, SIAM Rev. 45, 167 (2003)ADSMATHMathSciNetGoogle Scholar
  8. 8.
    J. Maynard Smith, Evolution and the Theory of Games (Cambridge University Press, 1982)Google Scholar
  9. 9.
    J. Hofbauer, K. Sigmund, Evolutionary Games and Population Dynamics (Cambridge University Press, 1998)Google Scholar
  10. 10.
    M.A. Nowak, Evolutionary Dynamics (Harvard University Press, 2006)Google Scholar
  11. 11.
    K. Sigmund, The Calculus of Selfishness (Princeton University Press, 2010)Google Scholar
  12. 12.
    J.W. Weibull, Evolutionary Game Theory (MIT Press, 1995)Google Scholar
  13. 13.
    G. Szabó, G. Fáth, Phys. Rep. 446, 97 (2007)ADSMathSciNetGoogle Scholar
  14. 14.
    S. Schuster, J.U. Kreft, A. Schroeter, T. Pfeiffer, J. Biol. Phys. 34, 1 (2008)Google Scholar
  15. 15.
    M. Perc, A. Szolnoki, BioSystems 99, 109 (2010)Google Scholar
  16. 16.
    E. Frey, Physica A 389, 4265 (2010) ADSMATHMathSciNetGoogle Scholar
  17. 17.
    C.P. Roca, J.A. Cuesta, A. Sánchez, Phys. Life Rev. 6, 208 (2009)ADSGoogle Scholar
  18. 18.
    F.C. Santos, F. Pinheiro, T. Lenaerts, J.M. Pacheco, J. Theor. Biol. 299, 88 (2012)MathSciNetGoogle Scholar
  19. 19.
    D.A. Rand, M.A. Nowak, Trends Cogn. Sci. 17, 413 (2013)Google Scholar
  20. 20.
    M. Perc, J. Gómez-Gardeñes, A. Szolnoki, L.M. Floría, Y. Moreno, J. R. Soc. Interface 10, 20120997 (2013) Google Scholar
  21. 21.
    A. Szolnoki, M. Mobilia, L.L. Jiang, B. Szczesny, A.M. Rucklidge, M. Perc, J. R. Soc. Interface 11, 20140735 (2014) Google Scholar
  22. 22.
    G. Ichinose, M. Saito, H. Sayama, D.S. Wilson, Sci. Rep. 3, 2509 (2013)ADSGoogle Scholar
  23. 23.
    F. Fu, T. Wu, L. Wang, Phys. Rev. E 79, 036101 (2009) ADSMathSciNetGoogle Scholar
  24. 24.
    X. Chen, F. Fu, L. Wang, Phys. Rev. E 78, 051120 (2008) ADSGoogle Scholar
  25. 25.
    G. Ichinose, Y. Tenguishi, T. Tanizawa, Phys. Rev. E 88, 052808 (2013) ADSGoogle Scholar
  26. 26.
    Y. Li, X. Lan, X. Deng, R. Sadiq, Y. Deng, Physica A 403, 284 (2014) ADSMathSciNetGoogle Scholar
  27. 27.
    X. Chen, F. Fu, L. Wang, Physica A 378, 512 (2007) ADSGoogle Scholar
  28. 28.
    C. Xia, S. Meloni, Y. Moreno, Adv. Complex Syst. 15, 1250056 (2012) MathSciNetGoogle Scholar
  29. 29.
    C. Xia, Z. Ma, Y. Wang, J. Wang, Z. Chen, Physica A 390, 4602 (2011) ADSMathSciNetGoogle Scholar
  30. 30.
    W.X. Wang, J. Lü, G. Chen, P. Hui, Phys. Rev. E 77, 046109 (2008) ADSGoogle Scholar
  31. 31.
    Z.X. Wu, P. Holme, Phys. Rev. E 80, 026108 (2009) ADSGoogle Scholar
  32. 32.
    Z.X. Wu, Z. Rong, P. Holme, Phys. Rev. E 80, 036106 (2009) ADSGoogle Scholar
  33. 33.
    S. Lee, P. Holme, Z.X. Wu, Phys. Rev. Lett. 106, 028702 (2011) ADSGoogle Scholar
  34. 34.
    P. Cui, Z.X. Wu, J. Theor. Biol. 361, 111 (2014) MATHGoogle Scholar
  35. 35.
    Z. Rong, Z.X. Wu, W.X. Wang, Phys. Rev. E 82, 026101 (2010) ADSGoogle Scholar
  36. 36.
    T. Reichenbach, M. Mobilia, E. Frey, Nature 448, 1046 (2007) ADSGoogle Scholar
  37. 37.
    M. Milinski, R.D. Sommerfeld, H.J. Krambeck, F.A. Reed, J. Marotzke, Proc. Natl. Acad. Sci. USA 105, 2291 (2008) ADSGoogle Scholar
  38. 38.
    J.M. Pacheco, V.V. Vasconcelos, F.C. Santos, Phys. Life Rev. 11, 573 (2014)ADSGoogle Scholar
  39. 39.
    C.T. Bauch, D.J. Earn, Proc. Natl. Acad. Sci. USA 101, 13391 (2004) ADSMATHMathSciNetGoogle Scholar
  40. 40.
    Z.X. Wu, H.F. Zhang, Europhys. Lett. 104, 10002 (2013) ADSGoogle Scholar
  41. 41.
    J. Tanimoto, T. Fujiki, Z. Wang, A. Hagishima, N. Ikegaya, J. Stat. Mech. 2014, P11027 (2014) MathSciNetGoogle Scholar
  42. 42.
    R. Axelrod, The Evolution of Cooperation (Basic Books, New York, 1984)Google Scholar
  43. 43.
    M.A. Nowak, R. Highfield, SuperCooperators: Altruism, Evolution, and Why We Need Each Other to Succeed (Free Press, New York, 2011)Google Scholar
  44. 44.
    E.O. Wilson, The Insect Societies (Harvard University Press, 1971)Google Scholar
  45. 45.
    R.W. Wang, L. Shi, S.M. Ai, Q. Zheng, J. Animal Ecol. 77, 616 (2008)Google Scholar
  46. 46.
    A.F. Skutch, Condor 63, 198 (1961)Google Scholar
  47. 47.
    J. Maynard Smith, E. Szathmáry, The Major Transitions in Evolution (Oxford University Press, 1995)Google Scholar
  48. 48.
    E. Pennisi, Science 309, 93 (2005)Google Scholar
  49. 49.
    M.A. Nowak, Science 314, 1560 (2006) ADSGoogle Scholar
  50. 50.
    M.A. Nowak, R.M. May, Nature 359, 826 (1992) ADSGoogle Scholar
  51. 51.
    D.G. Rand, M.A. Nowak, J.H. Fowler, N.A. Christakis, Proc. Natl. Acad. Sci. USA 111, 17093 (2014) ADSGoogle Scholar
  52. 52.
    F.C. Santos, J.M. Pacheco, Phys. Rev. Lett. 95, 098104 (2005) ADSGoogle Scholar
  53. 53.
    F.C. Santos, J.M. Pacheco, T. Lenaerts, Proc. Natl. Acad. Sci. USA 103, 3490 (2006) ADSGoogle Scholar
  54. 54.
    J. Gómez-Gardeñes, M. Campillo, L. Floría, Y. Moreno, Phys. Rev. Lett. 98, 108103 (2007) ADSGoogle Scholar
  55. 55.
    A. Szolnoki, M. Perc, Z. Danku, Physica A 387, 2075 (2008) ADSGoogle Scholar
  56. 56.
    S.V. Buldyrev, R. Parshani, G. Paul, H.E. Stanley, S. Havlin, Nature 464, 1025 (2010) ADSGoogle Scholar
  57. 57.
    J. Gao, D. Li, S. Havlin, Nat. Sci. Rev. 1, 346 (2014)Google Scholar
  58. 58.
    D. Helbing, Nature 497, 51 (2013)ADSGoogle Scholar
  59. 59.
    M. Kivelä, A. Arenas, M. Barthelemy, J.P. Gleeson, Y. Moreno, M.A. Porter, J. Complex Netw. 2, 203 (2014)Google Scholar
  60. 60.
    S. Boccaletti, G. Bianconi, R. Criado, C. del Genio, J. Gómez-Gardeñes, M. Romance, I. Sendiña-Nadal, Z. Wang, M. Zanin, Phys. Rep. 544, 1 (2014)ADSMathSciNetGoogle Scholar
  61. 61.
    G. D’Agostino, A. Scala, Networks of Networks: The Last Frontier of Complexity (Springer, 2014)Google Scholar
  62. 62.
    S.N. Dorogovtsev, J.F. Mendes, Adv. Phys. 51, 1079 (2002) ADSGoogle Scholar
  63. 63.
    R. Albert, H. Jeong, A.L. Barabási, Nature 401, 130 (1999) ADSGoogle Scholar
  64. 64.
    S. Bornholdt, H.G. Schuster, in Handbook of Graphs and Networks (Wiley Online Library, 2003), Vol. 2Google Scholar
  65. 65.
    P. Erdős, A. Rényi, Publ. Math. Inst. Hungar. Acad. Sci 5, 17 (1960)Google Scholar
  66. 66.
    S. Wasserman, in Social Network Analysis: Methods and Applications (Cambridge University Press, 1994), Vol. 8 Google Scholar
  67. 67.
    M. Barthélemy, Phys. Rep. 499, 1 (2011)ADSMathSciNetGoogle Scholar
  68. 68.
    P. Holme, J. Saramäki, Phys. Rep. 519, 97 (2012)ADSGoogle Scholar
  69. 69.
    M. De Domenico, A. Solé-Ribalta, E. Cozzo, M. Kivelä, Y. Moreno, M.A. Porter, S. Gómez, A. Arenas, Phys. Rev. X 3, 041022 (2013) Google Scholar
  70. 70.
    B. Min, K.I. Goh, Phys. Rev. E 89, 040802(R) (2014) ADSGoogle Scholar
  71. 71.
    H. Wang, Q. Li, G. D’Agostino, S. Havlin, H.E. Stanley, P. Van Mieghem, Phys. Rev. E 88, 022801 (2013) ADSGoogle Scholar
  72. 72.
    J. Aguirre, R. Sevilla-Escoboza, R. Gutiérrez, D. Papo, J. Buldú, Phys. Rev. Lett. 112, 248701 (2014) ADSGoogle Scholar
  73. 73.
    J.F. Donges, H.C. Schultz, N. Marwan, Y. Zou, J. Kurths, Eur. Phys. J. B 84, 635 (2011)ADSGoogle Scholar
  74. 74.
    A. Saumell-Mendiola, M.Á. Serrano, M. Boguñá, Phys. Rev. E 86, 026106 (2012) ADSGoogle Scholar
  75. 75.
    R. Parshani, S.V. Buldyrev, S. Havlin, Phys. Rev. Lett. 105, 048701 (2010) ADSGoogle Scholar
  76. 76.
    X. Huang, J. Gao, S.V. Buldyrev, S. Havlin, H.E. Stanley, Phys. Rev. E 83, 065101(R) (2011) ADSGoogle Scholar
  77. 77.
    J. Gao, S.V. Buldyrev, H.E. Stanley, S. Havlin, Nat. Phys. 8, 40 (2012)Google Scholar
  78. 78.
    W. Li, A. Bashan, S.V. Buldyrev, Phys. Rev. Lett. 108, 228702 (2012) ADSGoogle Scholar
  79. 79.
    G. Dong, L. Tian, D. Zhou, R. Du, J. Xiao, H. Stanley, Europhys. Lett. 102, 68004 (2013) ADSGoogle Scholar
  80. 80.
    S. Gómez, A. Díaz-Guilera, J. Gómez-Gardeñes, C. Pérez-Vicente, Y. Moreno, A. Arenas, Phys. Rev. Lett. 110, 028701 (2013) ADSGoogle Scholar
  81. 81.
    M.J. Pocock, D.M. Evans, J. Memmott, Science 335, 973 (2012) ADSGoogle Scholar
  82. 82.
    P. Pattison, S. Wasserman, Br. J. Math. Stat. Psych. 52, 169 (1999)Google Scholar
  83. 83.
    J. Gao, S.V. Buldyrev, S. Havlin, H.E. Stanley, Phys. Rev. Lett. 107, 195701 (2011) ADSGoogle Scholar
  84. 84.
    S.W. Son, P. Grassberger, M. Paczuski, Phys. Rev. Lett. 107, 195702 (2011) ADSGoogle Scholar
  85. 85.
    D. Zhou, J. Gao, H. Stanley, S. Havlin, Phys. Rev. E. 87, 052812 (2013) ADSGoogle Scholar
  86. 86.
    T.P. Peixoto, S. Bornholdt, Phys. Rev. Lett. 109, 118703 (2012) ADSGoogle Scholar
  87. 87.
    G. Bianconi, S.N. Dorogovtsev, Phys. Rev. E 89, 062814 (2014) ADSGoogle Scholar
  88. 88.
    S. Gomez, A. Diaz-Guilera, J. Gomez-Gardeñes, C.J. Perez-Vicente, Y. Moreno, A. Arenas, Phys. Rev. Lett. 110, 028701 (2013) ADSGoogle Scholar
  89. 89.
    Y. Wang, G. Xiao, J. Liu, New J. Phys. 14, 013015 (2012) ADSGoogle Scholar
  90. 90.
    D. Zhao, L. Wang, S. Li, Z. Wang, L. Wang, B. Gao, PLoS ONE 9, e112018 (2014) ADSGoogle Scholar
  91. 91.
    C. Buono, L.G. Alvarez-Zuzek, P.A. Macri, L.A. Braunstein, PLoS ONE 9, e92200 (2014) ADSGoogle Scholar
  92. 92.
    Z. Wang, A. Szolnoki, M. Perc, Europhys. Lett. 97, 48001 (2012) ADSGoogle Scholar
  93. 93.
    M. Santos, S. Dorogovtsev, J. Mendes, Sci. Rep. 4, 4436 (2014)ADSGoogle Scholar
  94. 94.
    J. Gómez-Gardeñes, I. Reinares, A. Arenas, L.M. Floría, Sci. Rep. 2, 620 (2012)Google Scholar
  95. 95.
    Q. Jin, L. Wang, C. Xia, Z. Wang, Sci. Rep. 4, 4095 (2012)Google Scholar
  96. 96.
    B. Wang, X. Chen, L. Wang, J. Stat. Mech. 2012, P11017 (2012) Google Scholar
  97. 97.
    C. Tang, Z. Wang, X. Li, PLoS ONE 9, e88412 (2014) ADSGoogle Scholar
  98. 98.
    M. Diakonova, M. San Miguel, V.M. Eguiluz, Phys. Rev. E 89, 062818 (2014) ADSGoogle Scholar
  99. 99.
    F. Tan, J. Wu, Y. Xia, K.T. Chi, Phys. Rev. E 89, 062813 (2014) ADSGoogle Scholar
  100. 100.
    B. Bollobás, Modern Graph Theory (Springer, 1998)Google Scholar
  101. 101.
    G. Menichetti, D. Remondini, P. Panzarasa, R.J. Mondragón, G. Bianconi, PLoS ONE 9, e97857 (2014) Google Scholar
  102. 102.
    S. Shai, S. Dobson, Phys. Rev. E 87, 042812 (2013) ADSGoogle Scholar
  103. 103.
    F. Battiston, V. Nicosia, V. Latora, Phys. Rev. E 89, 032804 (2014) ADSGoogle Scholar
  104. 104.
    G. Bianconi, Phys. Rev. E 87, 062806 (2013) ADSGoogle Scholar
  105. 105.
    L.D.F. Costa, F.A. Rodrigues, G. Travieso, P.R. Villas Boas, Adv. Phys. 56, 167 (2007)ADSGoogle Scholar
  106. 106.
    V. Nicosia, G. Bianconi, V. Latora, M. Barthelemy, Phys. Rev. Lett. 111, 058701 (2013) ADSGoogle Scholar
  107. 107.
    V. Latora, M. Marchiori, Eur. Phys. J. B 32, 249 (2003)ADSGoogle Scholar
  108. 108.
    E. Cozzo, M. Kivelä, M. De Domenico, A. Solé, A. Arenas, S. Gómez, M.A. Porter, Y. Moreno, arXiv:1307.6780 (2013)Google Scholar
  109. 109.
    F. Battiston, V. Nicosia, V. Latora, Phys. Rev. E 89, 032804 (2013) ADSGoogle Scholar
  110. 110.
    R. Criado, J. Flores, A. García del Amo, J. Gómez-Gardeñes, M. Romance, Int. J. Comput. Math. 89, 291 (2012)MATHMathSciNetGoogle Scholar
  111. 111.
    M.E.J. Newman, Phys. Rev. Lett. 89, 208701 (2002) ADSGoogle Scholar
  112. 112.
    R. Xulvi-Brunet, I. Sokolov, Phys. Rev. E 70, 066102 (2004) ADSGoogle Scholar
  113. 113.
    B. Min, S. Do Yi, K.M. Lee, K.I. Goh, Phys. Rev. E 89, 042811 (2014) ADSGoogle Scholar
  114. 114.
    S. Watanabe, Y. Kabashima, Phys. Rev. E 89, 012808 (2014) ADSGoogle Scholar
  115. 115.
    S. Melnik, M.A. Porter, P.J. Mucha, J.P. Gleeson, Chaos 24, 023106 (2014) ADSGoogle Scholar
  116. 116.
    M. De Domenico, A. Solé-Ribalta, E. Omodei, S. Gómez, A. Arenas, Nat. Commun. 6, 6868 (2015)ADSGoogle Scholar
  117. 117.
    R. Parshani, C. Rozenblat, D. Ietri, C. Ducruet, S. Havlin, Europhys. Lett. 92, 68002 (2010) ADSGoogle Scholar
  118. 118.
    G. Baxter, S. Dorogovtsev, A. Goltsev, J. Mendes, Phys. Rev. Lett. 109, 248701 (2012) ADSGoogle Scholar
  119. 119.
    L. Solá, M. Romance, R. Criado, J. Flores, A.J.G. del Amo, S. Boccaletti, Chaos 23, 033131 (2013) ADSGoogle Scholar
  120. 120.
    V. Nicosia, V. Latora, arXiv:1403.1546 (2014) Google Scholar
  121. 121.
    N. Masuda, P. Holme, F1000Prime Rep. 5, 6 (2013)Google Scholar
  122. 122.
    N. Perra, B. Gonçalves, R. Pastor-Satorras, A. Vespignani, Sci. Rep. 2, 469 (2012)ADSGoogle Scholar
  123. 123.
    M. Berlingerio, M. Coscia, F. Giannotti, A. Monreale, D. Pedreschi, World Wide Web 16, 567 (2013)Google Scholar
  124. 124.
    D. Krackhardt, Social Netw. 9, 109 (1987)MathSciNetGoogle Scholar
  125. 125.
    X. Li, M.K. Ng, Y. Ye, in Proceedings of the 12th SIAM International Conference on Data Mining, SDM’12 (SIAM, 2012), pp. 141–152Google Scholar
  126. 126.
    A. Cardillo, M. Zanin, J. Gómez-Gardeñes, M. Romance, A.J.G. del Amo, S. Boccaletti, Eur. Phys. J. Special Topics 215, 23 (2013)ADSGoogle Scholar
  127. 127.
    A. Halu, R.J. Mondragon, P. Panzarasa, G. Bianconi, PLoS ONE 8, e78293 (2013) ADSGoogle Scholar
  128. 128.
    W. Li, C.C. Liu, T. Zhang, H. Li, M.S. Waterman, X.J. Zhou, PLoS Comput. Biol. 7, e1001106 (2011) ADSMathSciNetGoogle Scholar
  129. 129.
    M.P. Rombach, M.A. Porter, J.H. Fowler, P.J. Mucha, SIAM J. Appl. Math. 74, 167 (2014)MATHMathSciNetGoogle Scholar
  130. 130.
    X. Huang, I. Vodenska, S. Havlin, H.E. Stanley, Sci. Rep. 3, 1219 (2013)ADSGoogle Scholar
  131. 131.
    J. Yang, J. Leskovec, Proc. IEEE 12, 1892 (2014) Google Scholar
  132. 132.
    Z. Wang, L. Wang, M. Perc, Phys. Rev. E 89, 052813 (2014) ADSGoogle Scholar
  133. 133.
    J. Gómez-Gardeñes, I. Reinares, A. Arenas, L.M. Floría, Sci. Rep. 2, 620 (2012)Google Scholar
  134. 134.
    Z. Wang, A. Szolnoki, M. Perc, Sci. Rep. 3, 2470 (2013)ADSGoogle Scholar
  135. 135.
    Z. Wang, A. Szolnoki, M. Perc, Sci. Rep. 3, 1183 (2013)ADSGoogle Scholar
  136. 136.
    A. Szolnoki, M. Perc, New J. Phys. 15, 053010 (2013) ADSMathSciNetGoogle Scholar
  137. 137.
    Z. Wang, A. Szolnoki, M. Perc, New J. Phys. 16, 033041 (2014) ADSGoogle Scholar
  138. 138.
    Z. Wang, A. Szolnoki, M. Perc, J. Theor. Biol. 349, 50 (2014)MathSciNetGoogle Scholar
  139. 139.
    J. Gómez-Gardeñes, C. Gracia-Lázaro, L.M. Floría, Y. Moreno, Phys. Rev. E 86, 056113 (2012) ADSGoogle Scholar
  140. 140.
    L.L. Jiang, M. Perc, Sci. Rep. 3, 2483 (2013)ADSGoogle Scholar
  141. 141.
    S. Fortunato, Phys. Rep. 486, 75 (2010)ADSMathSciNetGoogle Scholar
  142. 142.
    K.M. Lee, J.Y. Kim, W.K. Cho, K. Goh, I. Kim, New J. Phys. 14, 033027 (2012) ADSGoogle Scholar
  143. 143.
    S. Funk, V.A. Jansen, Phys. Rev. E 81, 036118 (2010) ADSGoogle Scholar
  144. 144.
    A. Cardillo, J. Gómez-Gardeñes, M. Zanin, M. Romance, D. Papo, F. del Pozo, S. Boccaletti, Sci. Rep. 3, 1344 (2013)ADSGoogle Scholar
  145. 145.
    B. Min, S.D. Yi, K.M. Lee, K.I. Goh, Phys. Rev. E 89, 042811 (2014) ADSGoogle Scholar
  146. 146.
    V. Marceau, P.A. Noël, L. Hébert-Dufresne, A. Allard, L.J. Dubé, Phys. Rev. E 84, 026105 (2011) ADSGoogle Scholar
  147. 147.
    J.Y. Kim, K.I. Goh, Phys. Rev. Lett. 111, 058702 (2013) ADSGoogle Scholar
  148. 148.
    V. Nicosia, G. Bianconi, V. Latora, M. Barthelemy, Phys. Rev. E 90, 042807 (2010) ADSGoogle Scholar
  149. 149.
    B. Fotouhi, N. Momeni, arXiv:1411.0344 (2014) Google Scholar
  150. 150.
    P. Wang, G. Robins, P. Pattison, E. Lazega, Social Netw. 35, 96 (2013)Google Scholar
  151. 151.
    M. Santos, S.N. Dorogovtsev, J.F.F. Mendes, Sci. Rep. 4, 4436 (2014)ADSGoogle Scholar
  152. 152.
    A. Szolnoki, G. Szabó, Europhys. Lett. 77, 30004 (2007) ADSGoogle Scholar
  153. 153.
    M. Perc, A. Szolnoki, Phys. Rev. E 77, 011904 (2008) ADSGoogle Scholar
  154. 154.
    A. Szolnoki, M. Perc, New J. Phys. 10, 043036 (2008) ADSGoogle Scholar
  155. 155.
    Z. Wang, A. Szolnoki, M. Perc, Phys. Rev. E 85, 037101 (2012) ADSGoogle Scholar
  156. 156.
    Z. Wang, A. Szolnoki, M. Perc, Sci. Rep. 2, 369 (2012)ADSGoogle Scholar
  157. 157.
    H. Lugo, M. San Miguel, Sci. Rep. 5, 7776 (2015)ADSGoogle Scholar
  158. 158.
    A. Szolnoki, Z. Wang, M. Perc, Sci. Rep. 2, 576 (2012)ADSGoogle Scholar
  159. 159.
    A. Szolnoki, M. Perc, J. R. Soc. Interface 12, 20141299 (2015) Google Scholar
  160. 160.
    J. Gómez-Gardeñes, M. Romance, R. Criado, D. Vilone, A. Sánchez, Chaos 21, 016113 (2011) ADSMathSciNetGoogle Scholar
  161. 161.
    J. Gómez-Gardeñes, D. Vilone, A. Sánchez, Europhys. Lett. 95, 68003 (2011) ADSGoogle Scholar
  162. 162.
    E.T. Lofgren et al., Proc. Natl. Acad. Sci. USA 111, 18095 (2014) ADSGoogle Scholar
  163. 163.
    M.R. Servedio, Y. Brandvain, S. Dhole, C.L. Fitzpatrick, E.E. Goldberg, C.A. Stern, J. Van Cleve, D.J. Yeh, PLoS Biol. 12, e1002017 (2014) Google Scholar
  164. 164.
    W. Güth, R. Schmittberger, B. Schwarze, J. Econ. Behav. Org. 3, 367 (1982)Google Scholar
  165. 165.
    K.M. Page, M.A. Nowak, K. Sigmund, Proc. R. Soc. B 267, 2177 (2000) Google Scholar
  166. 166.
    M.N. Kuperman, S. Risau-Gusman, Eur. Phys. J. B 62, 233 (2008)ADSMATHMathSciNetGoogle Scholar
  167. 167.
    J. Gao, Z. Li, T. Wu, L. Wang, Europhys. Lett. 93, 48003 (2011) ADSGoogle Scholar
  168. 168.
    A. Szolnoki, M. Perc, G. Szabó, Phys. Rev. Lett. 109, 078701 (2012) ADSGoogle Scholar
  169. 169.
    T. Wu, F. Fu, Y. Zhang, L. Wang, Sci. Rep. 3, 1550 (2013)ADSGoogle Scholar
  170. 170.
    A. Baronchelli, L. Dall’Asta, A. Barrat, V. Loreto, Phys. Rev. E 73, 015102 (2006) ADSMathSciNetGoogle Scholar
  171. 171.
    F.C. Santos, J.M. Pacheco, Proc. Natl. Acad. Sci. USA 108, 10421 (2011) ADSGoogle Scholar
  172. 172.
    X. Chen, A. Szolnoki, M. Perc, Europhys. Lett. 99, 68003 (2012) ADSGoogle Scholar
  173. 173.
    V.V. Vasconcelos, F.C. Santos, J.M. Pacheco, Nat. Climate Change 3, 797 (2013)ADSGoogle Scholar
  174. 174.
    A. Szolnoki, Phys. Life Rev. 11, 589 (2014)ADSGoogle Scholar
  175. 175.
    C.T. Bauch, A.P. Galvani, Science 342, 47 (2013)ADSGoogle Scholar
  176. 176.
    C.T. Bauch, D.J.D. Earn, Proc. Natl. Acad. Sci. USA 101, 13391 (2004) ADSMATHMathSciNetGoogle Scholar
  177. 177.
    A. d’Onofrio, P. Manfredi, J. Theor. Biol. 264, 237 (2010) MathSciNetGoogle Scholar
  178. 178.
    F. Fu, D.I. Rosenbloom, L. Wang, M.A. Nowak, Proc. R. Soc. B 278, 42 (2011)Google Scholar
  179. 179.
    C.G. Gu, S.R. Zou, X.L. Xu, Y.Q. Qu, Y.M. Jiang, D.R. He, H.K. Liu, T. Zhou, Phys. Rev. E 84, 026101 (2011) ADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Zhen Wang
    • 1
    • 2
  • Lin Wang
    • 3
  • Attila Szolnoki
    • 4
  • Matjaž Perc
    • 5
    • 6
    • 7
  1. 1.School of Computer and Information ScienceSouthwest UniversityChongqingP.R. China
  2. 2.Department of PhysicsHong Kong Baptist UniversityHong KongP.R. China
  3. 3.Centre for Chaos and Complex NetworksCity University of Hong KongHong KongP.R. China
  4. 4.Institute of Technical Physics and Materials Science, Centre for Energy ResearchHungarian Academy of SciencesBudapestHungary
  5. 5.Faculty of Natural Sciences and MathematicsUniversity of MariborMariborSlovenia
  6. 6.Department of Physics, Faculty of SciencesKing Abdulaziz UniversityJeddahSaudi Arabia
  7. 7.CAMTP — Center for Applied Mathematics and Theoretical PhysicsUniversity of MariborMariborSlovenia

Personalised recommendations