Analysis of information diffusion for threshold models on arbitrary networks

  • Sungsu Lim
  • Inwoo Jung
  • Seulki Lee
  • Kyomin Jung
Regular Article


Diffusion of information via networks has been extensively studied for decades. We study the general threshold model that embraces most of the existing models for information diffusion. In this paper, we first analyze diffusion processes under the linear threshold model, then generalize it into the general threshold model. We give a closed formula for estimating the final cascade size for those models and prove that the actual final cascade size is concentrated around the estimated value, for any network structure with node degrees ω(log n), where n is the number of nodes. Our analysis analytically explains the tipping point phenomenon that is commonly observed in information diffusion processes. Based on the formula, we devise an efficient algorithm for estimating the cascade size for general threshold models on any network with any given initial adopter set. Our algorithm can be employed as a subroutine for numerous algorithms for diffusion analysis such as influence maximization problem. Through experiments on real-world and synthetic networks, we confirm that the actual cascade size is very close to the value computed by our formula and by our algorithm, even when the degrees of the nodes are not so large.


Statistical and Nonlinear Physics 


  1. 1.
    J.A. Dodson., E. Muller, Management Science 24, 1568 (1976)CrossRefGoogle Scholar
  2. 2.
    J. Coleman, E.M. Katz, H. Menzel, Sociometry 20, 253 (1957)CrossRefGoogle Scholar
  3. 3.
    D.H.S. Bikhchandani, I. Welch, J. Polit. Econ. 100, 992 (1992)CrossRefGoogle Scholar
  4. 4.
    T.W. Valente, Network Models of the Diffusion of Innovations (Hampton Press, 1995)Google Scholar
  5. 5.
    F. Chierichetti, S. Lattanzi, A. Panconesi, in Proceedings of SODA, 2010, pp. 1657–1663Google Scholar
  6. 6.
    M. Granovetter, Am. J. Sociol. 83, 1420 (1978)CrossRefGoogle Scholar
  7. 7.
    R. Cohen, K. Erez, D. ben Avraham, S. Havlin, Phys. Rev. Lett. 85, 4626 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    R. Pastor-Satorras, A. Vespignani, Phys. Rev. Lett. 86, 3200 (2000)ADSCrossRefGoogle Scholar
  9. 9.
    D.J. Watts, Proc. Natl. Acad. Sci. USA 99, 5766 (2002)MathSciNetADSCrossRefzbMATHGoogle Scholar
  10. 10.
    D.E. Whitney, Phys. Rev. E 82, 066110 (2010)MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    E. Valdano, L. Ferreri, C. Poletto, V. Colizza, Phys. Rev. X 5, 021005 (2015)Google Scholar
  12. 12.
    D. Kempe, J. Kleinberg, E. Tardos, in Proceedings of KDD, 2003, pp. 137–146Google Scholar
  13. 13.
    M.E.J. Newman, Phys. Rev. E 66, 016128 (2002)MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    T.C. Schelling, J. Conflict Resolut. 17, 381 (1973)CrossRefGoogle Scholar
  15. 15.
    P. Domingos, M. Richardson, Mining Knowledge-Sharing Sites for Viral Marketing, in Proceedings of KDD, 2002, pp. 61–70Google Scholar
  16. 16.
    L. Blume, D. Easley, J. Kleinberg, R. Kleinberg, E. Tardos, in Proceedings of FOCS, 2011, pp. 393–402Google Scholar
  17. 17.
    D.M. Romero, Btranscript. Meeder, J. Kleinberg, in Proceedings of WWW, 2011, pp. 695–704Google Scholar
  18. 18.
    J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, N. Glance, in Proceedings of KDD, 2007, pp. 420–429Google Scholar
  19. 19.
    W. Chen, C. Wang, Y. Wang, in Proceedings of KDD, 2010, pp. 1029–1038Google Scholar
  20. 20.
    A. Goyal, W. Lu, L.V.S. Lakshmanan, in Proceedings of WWW, 2011, pp. 47–48Google Scholar
  21. 21.
    W. Chen, Y. Yuan, L. Zhang, in Proceedings of ICDM, 2010, pp. 88–97Google Scholar
  22. 22.
    A. Goyal, W. Lu, L.V.S. Lakshmanan, in Proceedings of ICDM, 2011, pp. 211–220Google Scholar
  23. 23.
    P. Holme, B.J. Kim, C.N. Yoon, S.K. Han, Phys. Rev. E 65, 056109 (2002)ADSCrossRefGoogle Scholar
  24. 24.
    P. Gai, S. Kapadia, Proc. R. Soc. A 466, 2401 (2010)MathSciNetADSCrossRefzbMATHGoogle Scholar
  25. 25.
    S.V. Buldyrev, R. Parshani, G. Paul, H.E. Stanley, S. Havlin, Nature 464, 1025 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    D.S. Callaway, M.E.J. Newman, S.H. Strogatz, D.J. Watts, Phys. Rev. Lett. 85, 5468 (2000)ADSCrossRefGoogle Scholar
  27. 27.
    A. Ganesh, L. Massoulie, D. Towsley, in Proceedings of INFOCOM, 2005, pp. 1455–1466Google Scholar
  28. 28.
    G. Ergun, Physica A 308, 483 (2002)MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    S. Wasserman, K. Faust, Social Network Analysis (Cambridge University Press, 1994)Google Scholar
  30. 30.
    M. Szell, R. Lambiotte, S. Thurner, Proc. Natl. Acad. Sci. USA 107, 13636 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    M. Richardson, R. Agrawal, P. Domingos, in Proceedings of ISWC, 2003, pp. 351–368Google Scholar
  32. 32.
    L.A. Adamic, N. Glance, in Proceedings of LinkKDD, 2005, pp. 36–43Google Scholar
  33. 33.
    K.T.D. Eames, M.J. Keeling, Proc. Natl. Acad. Sci. USA 99, 13330 (2002)ADSCrossRefGoogle Scholar
  34. 34.
    H. Zhou, R. Lipowsky, Proc. Natl. Acad. Sci. USA 102, 10052 (2005)ADSCrossRefGoogle Scholar
  35. 35.
    J.P. Gleeson, Phys. Rev. Lett. 107, 068701 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    J.P. Gleeson, Phys. Rev. X 3, 021004 (2013)Google Scholar
  37. 37.
    S. Lim, K. Jung, J.C.S. Lui, ACM SIGMETRICS Perform. Eval. Rev. 41, 31 (2013)CrossRefGoogle Scholar
  38. 38.
    Y. Lin, J.C.S. Lui, K. Jung, S. Lim, J. Complex Networks 2, 431 (2014)CrossRefGoogle Scholar
  39. 39.
    M.L. Katz, C. Shapiro, Am. Econ. Rev. 75, 424 (1985)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Sungsu Lim
    • 1
  • Inwoo Jung
    • 2
  • Seulki Lee
    • 3
  • Kyomin Jung
    • 2
  1. 1.Department of Knowledge Service EngineeringKAISTDaejeonKorea
  2. 2.Department of Electrical and Computer EngineeringSeoul National UniversitySeoulKorea
  3. 3.SoHoBricks Corp.IrvineUSA

Personalised recommendations