Community detection in directed acyclic graphs

Abstract

Some temporal networks, most notably citation networks, are naturally represented as directed acyclic graphs (DAGs). To detect communities in DAGs, we propose a modularity for DAGs by defining an appropriate null model (i.e., randomized network) respecting the order of nodes. We implement a spectral method to approximately maximize the proposed modularity measure and test the method on citation networks and other DAGs. We find that the attained values of the modularity for DAGs are similar for partitions that we obtain by maximizing the proposed modularity (designed for DAGs), the modularity for undirected networks and that for general directed networks. In other words, if we neglect the order imposed on nodes (and the direction of links) in a given DAG and maximize the conventional modularity measure, the obtained partition is close to the optimal one in the sense of the modularity for DAGs.

References

  1. 1.

    P. Holme, J. Saramäki, Phys. Rep. 519, 97 (2012)

    ADS  Article  Google Scholar 

  2. 2.

    S. Fortunato, Phys. Rep. 486, 75 (2010)

    MathSciNet  ADS  Article  Google Scholar 

  3. 3.

    D. Chakrabarti, R. Kumar, A. Tomkins, in Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Philadelphia, 2006 (ACM, New York, 2006), p. 554

  4. 4.

    C. Tantipathananandh, T. Berger-Wolf, D. Kempe, in Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Jose, 2007 (ACM, New York, 2007), p. 717

  5. 5.

    V. Kawadia, S. Sreenivasan, Sci. Rep. 2, 794 (2012)

    ADS  Article  Google Scholar 

  6. 6.

    P. Ronhovde, S. Chakrabarty, D. Hu, M. Sahu, K.K. Sahu, K.F. Kelton, N.A. Mauro, Z. Nussinov, Eur. Phys. J. E 34, 105 (2011)

    Article  Google Scholar 

  7. 7.

    D.J. Fenn, M.A. Porter, M. McDonald, S. Williams, N.F. Johnson, N.S. Jones, Chaos 19, 033119 (2009)

    ADS  Article  Google Scholar 

  8. 8.

    G. Palla, A.-L. Barabási, T. Vicsek, Nature 446, 664 (2007)

    ADS  Article  Google Scholar 

  9. 9.

    L. Gauvin, A. Panisson, C. Cattuto, PLoS ONE 9, e86028 (2014)

    ADS  Article  Google Scholar 

  10. 10.

    P.J. Mucha, T. Richardson, K. Macon, M.A. Porter, J.-P. Onnela, Science 328, 876 (2010)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  11. 11.

    D.S. Bassett, M.A. Porter, N.F. Wymbs, S.T. Grafton, J.M. Carlson, P.J. Mucha, Chaos 23, 013142 (2013)

    ADS  Article  Google Scholar 

  12. 12.

    M. Sarzynska, E.A. Leicht, G. Chowell, M.A. Porter, arXiv:1407.6297 (2015)

  13. 13.

    S. Pandit, Y. Yang, V. Kawadia, S. Sreenivasan, N.V. Chawla, in Proceedings of the 2011 IEEE First Network Science Workshop, West Point, New York, 2011 (IEEE, Los Alamitos, 2011), p. 173

  14. 14.

    J. Sun, C. Faloutsos, S. Papadimitriou, P.S. Yu, in Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Jose, 2007 (ACM, New York, 2007), p. 687

  15. 15.

    J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference (Morgan Kaufmann Publishers Inc., San Francisco, 1988)

  16. 16.

    M.I. Jordan, Stat. Sci. 19, 140 (2004)

    Article  MATH  Google Scholar 

  17. 17.

    S. Allesina, M. Pascual, Ecol. Lett. 12, 652 (2009)

    Article  Google Scholar 

  18. 18.

    H. Shimoji, M.S. Abe, K. Tsuji, N. Masuda, J. R. Soc. Interface 11, 20140599 (2014)

    Article  Google Scholar 

  19. 19.

    D.B. McDonald, D. Shizuka, Behav. Ecol. 24, 511 (2012)

    Article  Google Scholar 

  20. 20.

    D.J. de Solla Price, Science 149, 510 (1965)

    ADS  Article  Google Scholar 

  21. 21.

    E.A. Leicht, G. Clarkson, K. Shedden, M.E.J. Newman, Eur. Phys. J. B 59, 75 (2007)

    ADS  Article  MATH  Google Scholar 

  22. 22.

    B. Karrer, M.E.J. Newman, Phys. Rev. Lett. 102, 128701 (2009)

    ADS  Article  Google Scholar 

  23. 23.

    B. Karrer, M.E.J. Newman, Phys. Rev. E 80, 046110 (2009)

    ADS  Article  Google Scholar 

  24. 24.

    J. Ott, Analysis of Human Genetic Linkage (JHU Press, Baltimore, 1999)

  25. 25.

    B.M.E. Moret, L. Nakhleh, T. Warnow, C.R. Linder, A. Tholse, A. Padolina, J. Sun, R. Timme, IEEE ACM T. Comput. Biol. Bioinform. 1, 13 (2004)

    Article  Google Scholar 

  26. 26.

    F. Radicchi, S. Fortunato, A. Vespignani, in Models of Science Dynamics, Understanding Complex Systems, edited by A. Scharnhorst, K. Börner, P. Besselaar (Springer, Berlin, Heidelberg, 2012), Vol. 69, p. 233

  27. 27.

    R. Pfitzner, I. Scholtes, A. Garas, C.J. Tessone, F. Schweitzer, Phys. Rev. Lett. 110, 198701 (2013)

    ADS  Article  Google Scholar 

  28. 28.

    D. Kempe, J. Kleinberg, A. Kumar, in Proceedings of the thirty-second annual ACM Symposium on Theory of Computing, Portland, 2000 (ACM, New York, 2000), p. 504

  29. 29.

    V. Kostakos, Physica A 388, 1007 (2009)

    MathSciNet  ADS  Article  Google Scholar 

  30. 30.

    J. Hopcroft, O. Khan, B. Kulis, B. Selman, Proc. Natl. Acad. Sci. USA 101, 5249 (2004)

    ADS  Article  Google Scholar 

  31. 31.

    P. Chen, S. Redner, J. Informetr. 4, 278 (2010)

    Article  Google Scholar 

  32. 32.

    M. Rosvall, C.T. Bergstrom, PLoS ONE 5, e8694 (2010)

    ADS  Article  Google Scholar 

  33. 33.

    C.P. Massen, J.P.K. Doye, Phys. Rev. E 71, 046101 (2005)

    MathSciNet  ADS  Article  Google Scholar 

  34. 34.

    M.E.J. Newman, Phys. Rev. E 70, 056131 (2004)

    ADS  Article  Google Scholar 

  35. 35.

    Y. Kim, S.-W. Son, H. Jeong, Phys. Rev. E 81, 016103 (2010)

    ADS  Article  Google Scholar 

  36. 36.

    E.A. Leicht, M.E.J. Newman, Phys. Rev. Lett. 100, 118703 (2008)

    ADS  Article  Google Scholar 

  37. 37.

    M.J. Barber, Phys. Rev. E 76, 066102 (2007)

    MathSciNet  ADS  Article  Google Scholar 

  38. 38.

    R. Guimerà, M. Sales-Pardo, L.A.N. Amaral, Phys. Rev. E 76, 036102 (2007).

    ADS  Article  Google Scholar 

  39. 39.

    T. Murata, in Proceedings of the International Conference on Social Science and Engineering, Vancouver, 2009 (IEEE, Los Alamitos, 2009), Vol. 4, p. 50

  40. 40.

    P. Expert, T. S. Evans, V.D. Blondel, R. Lambiotte, Proc. Natl. Acad. Sci. USA 108, 7663 (2011)

    ADS  Article  MATH  Google Scholar 

  41. 41.

    X. Liu, T. Murata, K. Wakita, Phys. Rev. E 90, 012806 (2014)

    ADS  Article  Google Scholar 

  42. 42.

    M. MacMahon, D. Garlaschelli, Phys. Rev. X 5, 021006 (2015)

    Google Scholar 

  43. 43.

    P. Eades, X. Lin, W.F. Smyth, Inform. Process. Lett. 47, 319 (1993)

    MathSciNet  Article  MATH  Google Scholar 

  44. 44.

    M.E.J. Newman, M. Girvan, Phys. Rev. E 69, 026113 (2004)

    ADS  Article  Google Scholar 

  45. 45.

    A. Arenas, J. Duch, A. Fernández, S. Gómez, New J. Phys. 9, 176 (2007)

    ADS  Article  Google Scholar 

  46. 46.

    J. Goñi, B. Corominas-Murtra, R.V. Solé, C. Rodríguez-Caso, Phys. Rev. E 82, 1 (2010)

    Article  Google Scholar 

  47. 47.

    F.D. Malliaros, M. Vazirgiannis, Phys. Rep. 533, 95 (2013)

    MathSciNet  ADS  Article  Google Scholar 

  48. 48.

    M.E.J. Newman, Proc. Natl. Acad. Sci. USA 103, 8577 (2006)

    ADS  Article  Google Scholar 

  49. 49.

    M.E.J. Newman, Phys. Rev. E 74, 036104 (2006)

    MathSciNet  ADS  Article  Google Scholar 

  50. 50.

    U. Brandes, D. Delling, M. Gaertler, R. Görke, M. Hoefer, Z. Nikoloski, D. Wagner, IEEE Trans. Knowl. Data En. 20, 172 (2008)

    Article  Google Scholar 

  51. 51.

    V.D. Blondel, J.-L. Guillaume, R. Lambiotte, E. Lefebvre, J. Stat. Mech.: Theory Exp. 2008, P10008 (2008)

    Article  Google Scholar 

  52. 52.

    G. Csárdi and T. Nepusz, InterJournal Complex Systems, 1695 (2006)

  53. 53.

    J. Leskovec, J. Kleinberg, C. Faloutsos, in Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, Chicago, 2005 (ACM, New York, 2005), p. 177

  54. 54.

    J. Gehrke, P. Ginsparg, J. Kleinberg, SIGKDD Explor. 5, 149 (2003)

    Article  Google Scholar 

  55. 55.

    http://snap.stanford.edu/data/cit-HepPh.html (Accessed: February 20, 2015)

  56. 56.

    U.N. Raghavan, R. Albert, S. Kumara, Phys. Rev. E 76, 036106 (2007)

    ADS  Article  Google Scholar 

  57. 57.

    B.H. Good, Y.-A. de Montjoye, A. Clauset, Phys. Rev. E 81, 046106 (2010)

    MathSciNet  ADS  Article  Google Scholar 

  58. 58.

    S. Mangan, U. Alon, Proc. Natl. Acad. Sci. USA 100, 11980 (2003)

    ADS  Article  Google Scholar 

  59. 59.

    http://wws.weizmann.ac.il/mcb/UriAlon/index.php?q=e-coli-transcription-network (Accessed: February 17, 2015)

  60. 60.

    M.E.J. Newman, Phys. Rev. E 69, 066133 (2004)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Naoki Masuda.

Additional information

This article is published with open access at Springerlink.com

Contribution to the Topical Issue “Temporal Network Theory and Applications”, edited by Petter Holme.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Speidel, L., Takaguchi, T. & Masuda, N. Community detection in directed acyclic graphs. Eur. Phys. J. B 88, 203 (2015). https://doi.org/10.1140/epjb/e2015-60226-y

Download citation

Keywords

  • Null Model
  • Spectral Method
  • Citation Network
  • Directed Network
  • Jaccard Index