Community detection in directed acyclic graphs

  • Leo Speidel
  • Taro Takaguchi
  • Naoki MasudaEmail author
Open Access
Regular Article
Part of the following topical collections:
  1. Topical issue: Temporal Network Theory and Applications


Some temporal networks, most notably citation networks, are naturally represented as directed acyclic graphs (DAGs). To detect communities in DAGs, we propose a modularity for DAGs by defining an appropriate null model (i.e., randomized network) respecting the order of nodes. We implement a spectral method to approximately maximize the proposed modularity measure and test the method on citation networks and other DAGs. We find that the attained values of the modularity for DAGs are similar for partitions that we obtain by maximizing the proposed modularity (designed for DAGs), the modularity for undirected networks and that for general directed networks. In other words, if we neglect the order imposed on nodes (and the direction of links) in a given DAG and maximize the conventional modularity measure, the obtained partition is close to the optimal one in the sense of the modularity for DAGs.


Null Model Spectral Method Citation Network Directed Network Jaccard Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    P. Holme, J. Saramäki, Phys. Rep. 519, 97 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    S. Fortunato, Phys. Rep. 486, 75 (2010)MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    D. Chakrabarti, R. Kumar, A. Tomkins, in Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Philadelphia, 2006 (ACM, New York, 2006), p. 554Google Scholar
  4. 4.
    C. Tantipathananandh, T. Berger-Wolf, D. Kempe, in Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Jose, 2007 (ACM, New York, 2007), p. 717Google Scholar
  5. 5.
    V. Kawadia, S. Sreenivasan, Sci. Rep. 2, 794 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    P. Ronhovde, S. Chakrabarty, D. Hu, M. Sahu, K.K. Sahu, K.F. Kelton, N.A. Mauro, Z. Nussinov, Eur. Phys. J. E 34, 105 (2011)CrossRefGoogle Scholar
  7. 7.
    D.J. Fenn, M.A. Porter, M. McDonald, S. Williams, N.F. Johnson, N.S. Jones, Chaos 19, 033119 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    G. Palla, A.-L. Barabási, T. Vicsek, Nature 446, 664 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    L. Gauvin, A. Panisson, C. Cattuto, PLoS ONE 9, e86028 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    P.J. Mucha, T. Richardson, K. Macon, M.A. Porter, J.-P. Onnela, Science 328, 876 (2010)MathSciNetADSCrossRefzbMATHGoogle Scholar
  11. 11.
    D.S. Bassett, M.A. Porter, N.F. Wymbs, S.T. Grafton, J.M. Carlson, P.J. Mucha, Chaos 23, 013142 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    M. Sarzynska, E.A. Leicht, G. Chowell, M.A. Porter, arXiv:1407.6297 (2015)Google Scholar
  13. 13.
    S. Pandit, Y. Yang, V. Kawadia, S. Sreenivasan, N.V. Chawla, in Proceedings of the 2011 IEEE First Network Science Workshop, West Point, New York, 2011 (IEEE, Los Alamitos, 2011), p. 173Google Scholar
  14. 14.
    J. Sun, C. Faloutsos, S. Papadimitriou, P.S. Yu, in Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Jose, 2007 (ACM, New York, 2007), p. 687Google Scholar
  15. 15.
    J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference (Morgan Kaufmann Publishers Inc., San Francisco, 1988)Google Scholar
  16. 16.
    M.I. Jordan, Stat. Sci. 19, 140 (2004)CrossRefzbMATHGoogle Scholar
  17. 17.
    S. Allesina, M. Pascual, Ecol. Lett. 12, 652 (2009)CrossRefGoogle Scholar
  18. 18.
    H. Shimoji, M.S. Abe, K. Tsuji, N. Masuda, J. R. Soc. Interface 11, 20140599 (2014)CrossRefGoogle Scholar
  19. 19.
    D.B. McDonald, D. Shizuka, Behav. Ecol. 24, 511 (2012)CrossRefGoogle Scholar
  20. 20.
    D.J. de Solla Price, Science 149, 510 (1965)ADSCrossRefGoogle Scholar
  21. 21.
    E.A. Leicht, G. Clarkson, K. Shedden, M.E.J. Newman, Eur. Phys. J. B 59, 75 (2007)ADSCrossRefzbMATHGoogle Scholar
  22. 22.
    B. Karrer, M.E.J. Newman, Phys. Rev. Lett. 102, 128701 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    B. Karrer, M.E.J. Newman, Phys. Rev. E 80, 046110 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    J. Ott, Analysis of Human Genetic Linkage (JHU Press, Baltimore, 1999)Google Scholar
  25. 25.
    B.M.E. Moret, L. Nakhleh, T. Warnow, C.R. Linder, A. Tholse, A. Padolina, J. Sun, R. Timme, IEEE ACM T. Comput. Biol. Bioinform. 1, 13 (2004)CrossRefGoogle Scholar
  26. 26.
    F. Radicchi, S. Fortunato, A. Vespignani, in Models of Science Dynamics, Understanding Complex Systems, edited by A. Scharnhorst, K. Börner, P. Besselaar (Springer, Berlin, Heidelberg, 2012), Vol. 69, p. 233Google Scholar
  27. 27.
    R. Pfitzner, I. Scholtes, A. Garas, C.J. Tessone, F. Schweitzer, Phys. Rev. Lett. 110, 198701 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    D. Kempe, J. Kleinberg, A. Kumar, in Proceedings of the thirty-second annual ACM Symposium on Theory of Computing, Portland, 2000 (ACM, New York, 2000), p. 504Google Scholar
  29. 29.
    V. Kostakos, Physica A 388, 1007 (2009)MathSciNetADSCrossRefGoogle Scholar
  30. 30.
    J. Hopcroft, O. Khan, B. Kulis, B. Selman, Proc. Natl. Acad. Sci. USA 101, 5249 (2004)ADSCrossRefGoogle Scholar
  31. 31.
    P. Chen, S. Redner, J. Informetr. 4, 278 (2010)CrossRefGoogle Scholar
  32. 32.
    M. Rosvall, C.T. Bergstrom, PLoS ONE 5, e8694 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    C.P. Massen, J.P.K. Doye, Phys. Rev. E 71, 046101 (2005)MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    M.E.J. Newman, Phys. Rev. E 70, 056131 (2004)ADSCrossRefGoogle Scholar
  35. 35.
    Y. Kim, S.-W. Son, H. Jeong, Phys. Rev. E 81, 016103 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    E.A. Leicht, M.E.J. Newman, Phys. Rev. Lett. 100, 118703 (2008)ADSCrossRefGoogle Scholar
  37. 37.
    M.J. Barber, Phys. Rev. E 76, 066102 (2007)MathSciNetADSCrossRefGoogle Scholar
  38. 38.
    R. Guimerà, M. Sales-Pardo, L.A.N. Amaral, Phys. Rev. E 76, 036102 (2007).ADSCrossRefGoogle Scholar
  39. 39.
    T. Murata, in Proceedings of the International Conference on Social Science and Engineering, Vancouver, 2009 (IEEE, Los Alamitos, 2009), Vol. 4, p. 50Google Scholar
  40. 40.
    P. Expert, T. S. Evans, V.D. Blondel, R. Lambiotte, Proc. Natl. Acad. Sci. USA 108, 7663 (2011)ADSCrossRefzbMATHGoogle Scholar
  41. 41.
    X. Liu, T. Murata, K. Wakita, Phys. Rev. E 90, 012806 (2014)ADSCrossRefGoogle Scholar
  42. 42.
    M. MacMahon, D. Garlaschelli, Phys. Rev. X 5, 021006 (2015)Google Scholar
  43. 43.
    P. Eades, X. Lin, W.F. Smyth, Inform. Process. Lett. 47, 319 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    M.E.J. Newman, M. Girvan, Phys. Rev. E 69, 026113 (2004)ADSCrossRefGoogle Scholar
  45. 45.
    A. Arenas, J. Duch, A. Fernández, S. Gómez, New J. Phys. 9, 176 (2007)ADSCrossRefGoogle Scholar
  46. 46.
    J. Goñi, B. Corominas-Murtra, R.V. Solé, C. Rodríguez-Caso, Phys. Rev. E 82, 1 (2010)CrossRefGoogle Scholar
  47. 47.
    F.D. Malliaros, M. Vazirgiannis, Phys. Rep. 533, 95 (2013)MathSciNetADSCrossRefGoogle Scholar
  48. 48.
    M.E.J. Newman, Proc. Natl. Acad. Sci. USA 103, 8577 (2006)ADSCrossRefGoogle Scholar
  49. 49.
    M.E.J. Newman, Phys. Rev. E 74, 036104 (2006)MathSciNetADSCrossRefGoogle Scholar
  50. 50.
    U. Brandes, D. Delling, M. Gaertler, R. Görke, M. Hoefer, Z. Nikoloski, D. Wagner, IEEE Trans. Knowl. Data En. 20, 172 (2008)CrossRefGoogle Scholar
  51. 51.
    V.D. Blondel, J.-L. Guillaume, R. Lambiotte, E. Lefebvre, J. Stat. Mech.: Theory Exp. 2008, P10008 (2008)CrossRefGoogle Scholar
  52. 52.
    G. Csárdi and T. Nepusz, InterJournal Complex Systems, 1695 (2006)Google Scholar
  53. 53.
    J. Leskovec, J. Kleinberg, C. Faloutsos, in Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, Chicago, 2005 (ACM, New York, 2005), p. 177Google Scholar
  54. 54.
    J. Gehrke, P. Ginsparg, J. Kleinberg, SIGKDD Explor. 5, 149 (2003)CrossRefGoogle Scholar
  55. 55. (Accessed: February 20, 2015)
  56. 56.
    U.N. Raghavan, R. Albert, S. Kumara, Phys. Rev. E 76, 036106 (2007)ADSCrossRefGoogle Scholar
  57. 57.
    B.H. Good, Y.-A. de Montjoye, A. Clauset, Phys. Rev. E 81, 046106 (2010)MathSciNetADSCrossRefGoogle Scholar
  58. 58.
    S. Mangan, U. Alon, Proc. Natl. Acad. Sci. USA 100, 11980 (2003)ADSCrossRefGoogle Scholar
  59. 59.
  60. 60.
    M.E.J. Newman, Phys. Rev. E 69, 066133 (2004)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Department of Mathematical InformaticsThe University of TokyoTokyoJapan
  2. 2.JST, ERATO, Kawarabayashi Large Graph ProjectTokyoJapan
  3. 3.National Institute of InformaticsTokyoJapan
  4. 4.Department of Engineering MathematicsUniversity of BristolClifton, BristolUK

Personalised recommendations