Advertisement

Work distribution function for a Brownian particle driven by a nonconservative force

  • Bappa Saha
  • Sutapa MukherjiEmail author
Regular Article

Abstract

We derive the distribution function of work performed by a harmonic force acting on a uniformly dragged Brownian particle subjected to a rotational torque. Following the Onsager and Machlup’s functional integral approach, we obtain the transition probability of finding the Brownian particle at a particular position at time t given that it started the journey from a specific location at an earlier time. The difference between the forward and the time-reversed form of the generalized Onsager-Machlup’s Lagrangian is identified as the rate of medium entropy production which further helps us develop the stochastic thermodynamics formalism for our model. The probability distribution for the work done by the harmonic trap is evaluated for an equilibrium initial condition. Although this distribution has a Gaussian form, it is found that the distribution does not satisfy the conventional work fluctuation theorem.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    R. Kubo, Rep. Prog. Phys. 29, 255 (1966)CrossRefADSGoogle Scholar
  2. 2.
    R. Kubo, M. Toda, N. Hashitsume, Statistical Physics II: Nonequilibrium Statistical Mechanics, 2nd edn. (Springer, Berlin, 1998)Google Scholar
  3. 3.
    D.J. Evans, E.G.D. Cohen, G.P. Morriss, Phys. Rev. Lett. 71, 2401 (1993)CrossRefADSzbMATHGoogle Scholar
  4. 4.
    D.J. Evans, D.J. Searles, Phys. Rev. E 50, 1645 (1994)CrossRefADSGoogle Scholar
  5. 5.
    G. Gallavotti, E.G.D. Cohen, Phys. Rev. Lett. 74, 2694 (1995)CrossRefADSGoogle Scholar
  6. 6.
    J. Kurchan, J. Phys. A 31, 3719 (1998)CrossRefADSzbMATHMathSciNetGoogle Scholar
  7. 7.
    B. Derrida, J. Stat. Mech. 2007, P07023 (2007)CrossRefMathSciNetGoogle Scholar
  8. 8.
    C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997)CrossRefADSGoogle Scholar
  9. 9.
    C. Jarzynski, Phys. Rev. E 56, 5018 (1997)CrossRefADSGoogle Scholar
  10. 10.
    G.E. Crooks, Phys. Rev. E 60, 2721 (1999)CrossRefADSGoogle Scholar
  11. 11.
    G.E. Crooks, Phys. Rev. E 61, 2361 (2000)CrossRefADSGoogle Scholar
  12. 12.
    J.L. Lebowitz, H. Spohn, J. Stat. Phys. 95, 333 (1999)CrossRefADSzbMATHMathSciNetGoogle Scholar
  13. 13.
    R.J. Harris, G.M. Schütz, J. Stat. Mech. 2007, P07020 (2007)CrossRefGoogle Scholar
  14. 14.
    U. Seifert, Phys. Rev. Lett. 95, 040602 (2005)CrossRefADSGoogle Scholar
  15. 15.
    U. Seifert, Eur. Phys. J. B 64, 423 (2008)CrossRefADSzbMATHGoogle Scholar
  16. 16.
    U. Seifert, Rep. Prog. Phys. 75, 126001 (2012)CrossRefADSGoogle Scholar
  17. 17.
    M. Esposito, C. Van den Broeck, Phys. Rev. Lett. 104, 090601 (2010)CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Nonequilibrium Statistical Physics of Small Systems: Fluctuation Relations and Beyond, edited by R. Klages, W. Just, C. Jarzynski (Wiley-VCH, Weinheim, 2013)Google Scholar
  19. 19.
    R. van Zon, E.G.D. Cohen, Phys. Rev. Lett. 91, 110601 (2003)CrossRefGoogle Scholar
  20. 20.
    R. van Zon, E.G.D. Cohen, Phys. Rev. E 67, 046102 (2003)CrossRefADSGoogle Scholar
  21. 21.
    R. van Zon, E.G.D. Cohen, Phys. Rev. E 69, 056121 (2004)CrossRefADSGoogle Scholar
  22. 22.
    F. Ritort, C. Bustamante, I. Tinoco Jr., Proc. Natl. Acad. Sci. USA 99, 13544 (2002)CrossRefADSGoogle Scholar
  23. 23.
    O. Mazonka, C. Jarzynski, arXiv:cond-mat/9912121v1 (1999)Google Scholar
  24. 24.
    T. Speck, U. Seifert, Eur. Phys. J. B 43, 521 (2005)CrossRefADSGoogle Scholar
  25. 25.
    A. Imparato, L. Peliti, G. Pesce, G. Rusciano, A. Sasso, Phys. Rev. E 76, 050101(R) (2007)CrossRefADSGoogle Scholar
  26. 26.
    J. Farago, J. Stat. Phys. 107, 781 (2002)CrossRefADSzbMATHMathSciNetGoogle Scholar
  27. 27.
    A. Imparato, L. Peliti, Europhys. Lett. 70, 740 (2005)CrossRefADSGoogle Scholar
  28. 28.
    S. Sabhapandit, Europhys. Lett. 96, 20005 (2011)CrossRefADSGoogle Scholar
  29. 29.
    S. Sabhapandit, Phys. Rev. E 85, 021108 (2012)CrossRefADSGoogle Scholar
  30. 30.
    C. Kwon, J.D. Noh, H. Park, Phys. Rev. E 83, 061145 (2011)CrossRefADSGoogle Scholar
  31. 31.
    J.D. Noh, C. Kwon, H. Park, Phys. Rev. Lett. 111, 130601 (2013)CrossRefADSGoogle Scholar
  32. 32.
    L. Onsager, S. Machlup, Phys. Rev. 91, 1505 (1953)CrossRefADSzbMATHMathSciNetGoogle Scholar
  33. 33.
    S. Machlup, L. Onsager, Phys. Rev. 91, 1512 (1953)CrossRefADSzbMATHMathSciNetGoogle Scholar
  34. 34.
    L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. Landim, Phys. Rev. Lett. 87, 040601 (2001)CrossRefADSMathSciNetGoogle Scholar
  35. 35.
    L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. Landim, J. Stat. Phys. 107, 635 (2002)CrossRefADSzbMATHGoogle Scholar
  36. 36.
    L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. Landim, J. Stat. Phys. 123, 237 (2006)CrossRefADSzbMATHMathSciNetGoogle Scholar
  37. 37.
    A. Imparato, L. Peliti, Phys. Rev. E 74, 026106 (2006)CrossRefADSMathSciNetGoogle Scholar
  38. 38.
    T. Taniguchi, E.G.D. Cohen, J. Stat. Phys. 126, 1 (2007)CrossRefADSzbMATHMathSciNetGoogle Scholar
  39. 39.
    T. Taniguchi, E.G.D. Cohen, J. Stat. Phys. 130, 1 (2008)CrossRefADSzbMATHMathSciNetGoogle Scholar
  40. 40.
    T. Taniguchi, E.G.D. Cohen, J. Stat. Phys. 130, 633 (2008)CrossRefADSzbMATHMathSciNetGoogle Scholar
  41. 41.
    E.G.D. Cohen, J. Stat. Mech. 2008, P07014 (2008)CrossRefGoogle Scholar
  42. 42.
    C. Maes, K. Netočný, B. Wynants, J. Phys. A 42, 365002 (2009)CrossRefADSMathSciNetGoogle Scholar
  43. 43.
    B. Saha, S. Mukherji, J. Stat. Mech. 2014, P08014 (2014)CrossRefMathSciNetGoogle Scholar
  44. 44.
    A. Engel, Phys. Rev. E 80, 021120 (2009)CrossRefADSGoogle Scholar
  45. 45.
    D. Nickelsen, A. Engel, Eur. Phys. J. B 82, 207 (2011)CrossRefADSGoogle Scholar
  46. 46.
    V.Y. Chernyak, M. Chertkov, C. Jarzynski, J. Stat. Mech. 2006, P08001 (2006)CrossRefGoogle Scholar
  47. 47.
    S. Ciliberto, S. Joubaud, A. Petrosyan, J. Stat. Mech. 2010, P12003 (2010)CrossRefGoogle Scholar
  48. 48.
    S. Joubaud, N.B. Garnier, S. Ciliberto, J. Stat. Mech. 2007, P09018 (2007)CrossRefGoogle Scholar
  49. 49.
    H. Risken, The Fokker-Planck Equation: Methods of Solution and Applications (Springer-Verlag, Berlin, 1989)Google Scholar
  50. 50.
    F.W. Wiegel, Introduction to Path Integral Methods in Physics and Polymer Science (World Scientific, Singapore, 1986)Google Scholar
  51. 51.
    K. Sekimoto, Prog. Theor. Phys. Suppl. 130, 17 (1998)CrossRefADSGoogle Scholar
  52. 52.
    P. Jop, A. Petrosyan, S. Ciliberto, Europhys. Lett. 81, 50005 (2008)CrossRefADSGoogle Scholar
  53. 53.
    M. Campisi, P. Hänggi, P. Talkner, Rev. Mod. Phys. 83, 771 (2011)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of PhysicsIndian Institute of TechnologyKanpurIndia
  2. 2.Department of Protein Chemistry and TechnologyCentral Food Technological Research InstituteMysoreIndia

Personalised recommendations