Advertisement

Herding interactions as an opportunity to prevent extreme events in financial markets

  • Aleksejus KononoviciusEmail author
  • Vygintas Gontis
Regular Article

Abstract

A characteristic feature of complex systems in general is a tight coupling between their constituent parts. In complex socio-economic systems this kind of behavior leads to self-organization, which may be both desirable (e.g. social cooperation) and undesirable (e.g. mass panic, financial “bubbles” or “crashes”). Abundance of the empirical data as well as general insights into the trading behavior enables the creation of simple agent-based models reproducing sophisticated statistical features of the financial markets. In this contribution we consider a possibility to prevent self-organized extreme events in financial market modeling its behavior using agent-based herding model, which reproduces main stylized facts of the financial markets. We show that introduction of agents with predefined fundamentalist trading behavior helps to significantly reduce the probability of the extreme price fluctuations events. We also investigate random trading, which was previously found to be promising extreme event prevention strategy, and find that its impact on the market has to be considered among other opportunities to stabilize the markets.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    J.P. Bouchaud, M. Potters, Theory of Financial Risks and Derivative Pricing (Cambridge University Press, New York, 2004)Google Scholar
  2. 2.
    A. Chakraborti, I.M. Toke, M. Patriarca, F. Abergel, Quant. Financ. 7, 991 (2011)CrossRefGoogle Scholar
  3. 3.
    R. Cont, M. Potters, J. Bouchaud, in Scale Invariance and Beyond, edited by B. Dubrulle, F. Graner, D. Sornette (Springer, 1997)Google Scholar
  4. 4.
    X. Gabaix, Ann. Rev. Econ. 1, 255 (2009)CrossRefGoogle Scholar
  5. 5.
    V. Gontis, A. Kononovicius, S. Reimann, Adv. Complex Syst. 15, 1250071 (2012)MathSciNetCrossRefGoogle Scholar
  6. 6.
    M. Karsai, K. Kaski, A.L. Barabasi, J. Kertesz, NIH Sci. Rep. 2, 397 (2012)ADSGoogle Scholar
  7. 7.
    D. Kondor, M. Posfai, I. Csabai, G. Vattay, PLoS ONE 9, e86197 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    R.N. Mantegna, H.E. Stanley, Introduction to Econophysics: Correlations and Complexity in Finance (Cambridge University Press, 2000)Google Scholar
  9. 9.
    C. Schinckus, Contemp. Phys. 54, 17 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    D. Challet, Y.C. Zhang, Physica A 246, 407 (1997)ADSCrossRefGoogle Scholar
  11. 11.
    S. Galam, F. Jacobs, Physica A 381, 366 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    S. Galam, Physica A 389, 3619 (2010)MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    D. Helbing, Social Self-Organization (Springer, 2012)Google Scholar
  14. 14.
    F. Schweitzer, P. Mavrodiev, C.J. Tessone, Adv. Complex Syst. 16, 1350017 (2013)MathSciNetCrossRefGoogle Scholar
  15. 15.
    G. Akerlof, J. Shiller, Animal Spirits: How Human Psychology Drives the Economy, and Why It Matters for Global Capitalism (Princeton University Press, 2009)Google Scholar
  16. 16.
    G.S. Becker, J. Polit. Econ. 99, 1109 (1991)CrossRefGoogle Scholar
  17. 17.
    A.E. Biondo, A. Pluchino, A. Rapisarda, D. Helbing, Phys. Rev. E 88, 062814 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    J.P. Bouchaud, J. Stat. Phys. 151, 567 (2013)MathSciNetADSCrossRefzbMATHGoogle Scholar
  19. 19.
    D.O. Cajueiro, B.M. Tabak, Chaos Solitons Fractals 40, 497 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    J.R.G. Dyer, A. Johansson, D. Helbing, I.D. Couzin, J. Krause, Phil. Trans. R. Soc. B 364, 781 (2009)CrossRefGoogle Scholar
  21. 21.
    D.R. Parisi, D. Sornette, D. Helbing, Phys. Rev. E 87, 012804 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    R.M. Raafat, N. Chater, C. Frith, Trends Cogn. Sci. 13, 420 (2009)CrossRefGoogle Scholar
  23. 23.
    A. Chakraborti, I.M. Toke, M. Patriarca, F. Abergel, Quant. Financ. 7, 1013 (2011)CrossRefGoogle Scholar
  24. 24.
    S. Cincotti, L. Gardini, T. Lux, Comput. Econ. 32, 1 (2008)CrossRefGoogle Scholar
  25. 25.
    R. Conte et al., Eur. Phys. J. Special Topics 214, 325 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    M. Cristelli, L. Pietronero, A. Zaccaria, Critical Overview of Agent-Based Models for Economics, in Proceedings of the School of Physics “E. Fermi”, Course CLXXVI, edited by F. Mallnace, H.E. Stanley (SIF-IOS, Bologna-Amsterdam, 2012), pp. 235–282Google Scholar
  27. 27.
    J.D. Farmer, D. Foley, Nature 460, 685 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    R. Frederick, Proc. Natl. Acad. Sci. USA 110, 3703 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    E. Samanidou, E. Zschischang, D. Stauffer, T. Lux, Rep. Prog. Phys. 70, 409 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    V.M. Yakovenko, in Encyclopedia of Complexity and System Science, edited by R.A. Meyers (Springer, 2009)Google Scholar
  31. 31.
    D. Challet, M. Marsili, R. Zecchina, Phys. Rev. Lett. 84, 1824 (2000)ADSCrossRefGoogle Scholar
  32. 32.
    J.D. Farmer, P. Patelli, I. Zovko, Proc. Natl. Acad. Sci. 102, 2254 (2005)ADSCrossRefGoogle Scholar
  33. 33.
    T. Lux, M. Marchesi, Nature 397, 498 (1999)ADSCrossRefGoogle Scholar
  34. 34.
    T. Preis, S. Golke, W. Paul, J.J. Schneider, Europhys. Lett. 75, 510 (2006)MathSciNetADSCrossRefGoogle Scholar
  35. 35.
    C. Chiarella, R. Dieci, X.Z. He, Research Paper Series 231 (Quantitative Finance Research Centre, University of Technology, Sydney, 2008)Google Scholar
  36. 36.
    M. Cristelli, Complexity in Financial Markets (Springer, 2014)Google Scholar
  37. 37.
    S. Jacob Leal, M. Napoletano, A. Roventini, G. Fagiolo, Sciences Po publications 2014-03, Sciences Po (2014)Google Scholar
  38. 38.
    A.P. Kirman, Quarter. J. Econ. 108, 137 (1993)CrossRefGoogle Scholar
  39. 39.
    S. Alfarano, T. Lux, F. Wagner, Comput. Econ. 26, 19 (2005)CrossRefzbMATHGoogle Scholar
  40. 40.
    S. Alfarano, T. Lux, F. Wagner, J. Econ. Dyn. Control 32, 101 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    S. Alfarano, M. Milakovic, M. Raddant, Eur. J. Financ. 19, 449 (2013)CrossRefGoogle Scholar
  42. 42.
    V. Alfi, M. Cristelli, L. Pietronero, A. Zaccaria, Eur. Phys. J. B 67, 385 (2009)ADSCrossRefzbMATHGoogle Scholar
  43. 43.
    V. Alfi, M. Cristelli, L. Pietronero, A. Zaccaria, Eur. Phys. J. B 67, 399 (2009)ADSCrossRefzbMATHGoogle Scholar
  44. 44.
    A. Kononovicius, V. Gontis, Physica A 391, 1309 (2012)ADSCrossRefGoogle Scholar
  45. 45.
    A. Kirman, G. Teyssiere, Studies in Nonlinear Dynamics Econometrics 5, 281 (2002)CrossRefGoogle Scholar
  46. 46.
    A. Kononovicius, V. Gontis, Europhys. Lett. 101, 28001 (2013)ADSCrossRefGoogle Scholar
  47. 47.
    V. Gontis, A. Kononovicius, PLoS ONE 9, e102201 (2014)ADSCrossRefGoogle Scholar
  48. 48.
    A.E. Biondo, A. Pluchino, A. Rapisarda, D. Helbing, PLoS ONE 8, e68344 (2013)ADSCrossRefGoogle Scholar
  49. 49.
    J.M. Pasteels, J.L. Deneubourg, S. Goss, in From Individual to Collective Behaviour in Social Insects, edited by J.M. Pasteels, J.L. Deneubourg (Birkhauser, Basel, 1987), pp. 155–175Google Scholar
  50. 50.
    J.M. Pasteels, J.L. Deneubourg, S. Goss, in From Individual to Collective Behaviour in Social Insects, edited by J.M. Pasteels, J.L. Deneubourg (Birkhauser, Basel, 1987), pp. 177–196Google Scholar
  51. 51.
    J. Krause, A.F.T. Winfield, J.L. Deneubourg, Trends Ecol. Evol. 26, 369 (2011)CrossRefGoogle Scholar
  52. 52.
    S. Alfarano, M. Milakovic, J. Econ. Dyn. Control 33, 78 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    A. Kononovicius, J. Ruseckas, Eur. Phys. J. B 87, 169 (2014)ADSCrossRefGoogle Scholar
  54. 54.
    C.M. Gell-Mann, C. Tsallis, Nonextensive Entropy – Interdisciplinary Applications (Oxford University Press, New York, 2004)Google Scholar
  55. 55.
    A. Kononovicius, V. Gontis, Physica A 405, 80 (2014)MathSciNetADSCrossRefGoogle Scholar
  56. 56.
    R. Rak, S. Drozdz, J. Kwapien, P. Oswiecimka, Acta Physica Polonica B 44, 2035 (2013)ADSCrossRefGoogle Scholar
  57. 57.
    A. Kononovicius, J. Ruseckas, Physica A 427, 74 (2015)ADSCrossRefGoogle Scholar
  58. 58.
    C. Hommes, in Heterogeneous Agent Models in Economics and Finance (Elsevier, 2006), Vol. 2, Chap. 23, pp. 1109–1186Google Scholar
  59. 59.
    C. Hommes, Tinbergen institute discussion papers, Tinbergen Institute (2006)Google Scholar
  60. 60.
    C.H. Hommes, Bounded Rationality and Learning in Complex Markets (Edward Elgar, Cheltenham, 2009)Google Scholar
  61. 61.
    R.N. Mantegna, B. Spagnolo, Phys. Rev. Lett. 76, 563 (1996)ADSCrossRefGoogle Scholar
  62. 62.
    J. Garcia-Ojalvo, J. Sancho, Noise in Spatially Extended Systems (Springer, 1999)Google Scholar
  63. 63.
    C. Rouvas-Nicolis, G. Nicolis, 2, 1474 (2007)Google Scholar
  64. 64.
    F. Caruso, S.F. Huelga, M.B. Plenio, Phys. Rev. Lett. 105, 190501 (2010)ADSCrossRefGoogle Scholar
  65. 65.
    A. Pluchino, A. Rapisarda, C. Garofalo, Physica A 389, 467 (2010)ADSCrossRefGoogle Scholar
  66. 66.
    A. Pluchino, A. Rapisarda, C. Garofalo, S. Spagano, M. Caserta, Physica A 390, 3944 (2010)ADSCrossRefGoogle Scholar
  67. 67.
    M. Friedman, A Theory of the Consumption Function (Princeton University Press, 1956)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institute of Theoretical Physics and AstronomyVilnius UniversityVilniusLithuania

Personalised recommendations