Mono-parametric charge pumping through a quantum dot coupled with energy-gapped leads

Open Access
Regular Article

Abstract

We present a proposal for a single-parametric electron pump composed of a quantum dot between two unbiased leads with energy-gapped electron density of states (DOS). The model tight-binding Hamiltonian and the evolution operator technique are used in the calculations. The quantum dot is driven by the external harmonic field which leads to the pumping current flowing from the left or right electrode depending on the system parameters. We show that the net pumping current appears in the system if (i) there are at least two sideband states: one of them lying below and the second lying above the Fermi energy; (ii) the left and right lead DOS in the vicinity of these sideband states are different. Moreover, the energy-gapped structure of DOS is visible on the average quantum dot charge and the pumped current curves as well as on the transconductance characteristics. Thus mono-parametric pumping provides useful information about the system parameters, in particular about the lead DOS structure.

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    T.H. Oosterkamp, K.P. Kouwenhoven, A.E. Koolen, N.C. van der Vaart, C. Harmans, Phys. Rev. Lett. 78, 1536 (1997)CrossRefADSGoogle Scholar
  2. 2.
    L.P. Kouwenhoven, A.P. Johnson, N.C. van der Vaart, A. van der Enden, C. Hermans, C.T. Foxon, Z. Phys. B 85, 381 (1991)CrossRefADSGoogle Scholar
  3. 3.
    P. McEuen, L.P. Kouwenhoven, S. Jauhar, J. Orenstein, K. McCormick, D. Dixon, Yu.V. Nazarov, N.C. van der Vaart, C. Foxon, Nanotechnology 7, 406 (1996)CrossRefADSGoogle Scholar
  4. 4.
    R.H. Blick, R.J. Haug, J. Weis, D. Pfannkuche, K. von Klitzing, K. Eberl, Phys. Rev. B 53, 7899 (1996)CrossRefADSGoogle Scholar
  5. 5.
    S.K. Watson, R.M. Potok, C.M. Marcus, V. Umansky, Phys. Rev. Lett. 91, 258301 (2003)CrossRefADSGoogle Scholar
  6. 6.
    T. Kwapiński, R. Taranko, Physica E 18, 402 (2003)CrossRefADSGoogle Scholar
  7. 7.
    G. Platero, R. Aguado, Phys. Rep. 395, 1 (2004)CrossRefADSGoogle Scholar
  8. 8.
    P.W. Brouwer, Phys. Rev. B 58, R10135 (1998)CrossRefADSGoogle Scholar
  9. 9.
    M. Seo, Ye-Hwan Ahn, Y. Oh, Y. Chung, S. Ryu, H.-S. Sim, I.-H. Lee, M.-H. Bae, N. Kim, Phys. Rev. B 90, 085307 (2014)CrossRefADSGoogle Scholar
  10. 10.
    M. Switkes, C.M. Marcus, K. Campman, A.C. Gossard, Science 283, 1905 (1999)CrossRefADSGoogle Scholar
  11. 11.
    B. Roche, R.-P. Riwar, B. Voisin, E. Dupont-Ferrier, R. Wacquez, M. Vinet, M. Sanquer, J. Splettstoesser, X. Jehl, Nat. Commun. 4, 1581 (2012)CrossRefGoogle Scholar
  12. 12.
    V. Gasparian, B. Altshuler, M. Ortuno, Phys. Rev. B 72, 195309 (2005)CrossRefADSGoogle Scholar
  13. 13.
    M. Mahmoodian, L. Braginsky, M. Entin, Phys. Rev. B 74, 125317 (2006)CrossRefADSGoogle Scholar
  14. 14.
    E. Faizabadi, F. Ebrahimi, J. Phys.: Condens. Matter 16, 1789 (2004)ADSGoogle Scholar
  15. 15.
    S. Das, S. Rao, Phys. Rev. B 71, 165333 (2005)CrossRefADSGoogle Scholar
  16. 16.
    B. Wang, J. Wang, H. Guo, Phys. Rev. B 65, 073306 (2002)CrossRefADSGoogle Scholar
  17. 17.
    E. Prada, P. San-Jose, H. Schomerus, Phys. Rev. B 80, 245414 (2009)CrossRefADSGoogle Scholar
  18. 18.
    B. Abdollahipour, R. Mohammadkhani, J. Phys.: Condens. Matter 26, 085304 (2014)Google Scholar
  19. 19.
    L.H. Ingaramo, L. Foa Torres, Appl. Phys. Lett. 103, 123508 (2013)CrossRefADSGoogle Scholar
  20. 20.
    S.K. Watson, R.M. Potok, C.M. Marcus, V. Umansky, Phys. Rev. Lett. 91, 258301 (2003)CrossRefADSGoogle Scholar
  21. 21.
    T. Kwapiński, R. Taranko, J. Phys.: Condens. Matter 23, 405301 (2011)Google Scholar
  22. 22.
    Y. Avishai, D. Cohen, N. Nagaosa, Phys. Rev. Lett. 104, 196601 (2010)CrossRefADSGoogle Scholar
  23. 23.
    P.J. Leek, M.R. Buitelaar, V.I. Talyanskii, C.G. Smith, D. Anderson, G.A.C. Jones, J. Wei, D.H. Cobden, Phys. Rev. Lett. 95, 256802 (2005)CrossRefADSGoogle Scholar
  24. 24.
    S. Kohler, J. Lehmann, P. Hänggi, Phys. Rep. 406, 379 (2005)CrossRefADSGoogle Scholar
  25. 25.
    J. Lehmann, S. Kohler, P. Hänggi, A. Nitzan, Chem. Phys. 118, 3283 (2003)ADSGoogle Scholar
  26. 26.
    T. Kwapiński, S. Kohler, P. Hänggi, Ukr. J. Phys. 55, 85 (2010)Google Scholar
  27. 27.
    M. Rey, M. Strass, S. Kohler, P. Hänggi, F. Sols, Phys. Rev. B 76, 085337 (2007)CrossRefADSGoogle Scholar
  28. 28.
    L. Foa Torres, Phys. Rev. B 72, 245339 (2005)CrossRefADSGoogle Scholar
  29. 29.
    M.G. Vavilov, L. DiCarlo, C.M. Marcus, Phys. Rev. B 71, 241309(r) (2005)CrossRefADSGoogle Scholar
  30. 30.
    L. DiCarlo, C.M. Marcus, J.S. Harris, Phys. Rev. Lett. 91, 246804 (2003)CrossRefADSGoogle Scholar
  31. 31.
    B. Kaestner, V. Kashcheyevs, S. Amakawa, M.D. Blumenthal, L. Li, T.J.B.M. Janssen, G. Hein, K. Pierz, T. Weimann, U. Siegner, H.W. Schumacher, Phys. Rev. B 77, 153301 (2008)CrossRefADSGoogle Scholar
  32. 32.
    T. Aref, V.F. Maisi, M.V. Gustafsson, P. Delsing, J.P. Pekola, Europhys. Lett. 96, 37008 (2011)CrossRefADSGoogle Scholar
  33. 33.
    L. Foa Torres, H. Calvo, C. Rocha, G. Cuniberti, Appl. Phys. Lett. 99, 092102 (2011)CrossRefADSGoogle Scholar
  34. 34.
    P. San-Jose, E. Prada, S. Kohler, H. Schomerus, Phys. Rev. B 84, 155408 (2011)CrossRefADSGoogle Scholar
  35. 35.
    C.A. Perroni, A. Nocera, V. Cataudella, Europhys. Lett. 103, 58001 (2013)CrossRefADSGoogle Scholar
  36. 36.
    Y. Zhou, M.W. Wu, Phys. Rev. B 86, 085406 (2012)CrossRefADSGoogle Scholar
  37. 37.
    P. San-Jose, E. Prada, H. Schomerus, S. Kohler, Appl. Phys. Lett. 101, 153506 (2012)CrossRefADSGoogle Scholar
  38. 38.
    M. Strass, P. Hänggi, S. Kohler, Phys. Rev. Lett. 95, 130601 (2005)CrossRefADSGoogle Scholar
  39. 39.
    T.B. Grimley, V. Bhasu, K.L. Sebastian, Surf. Sci. 121, 305 (1983)CrossRefADSGoogle Scholar
  40. 40.
    R. Taranko, T. Kwapiński, E. Taranko, Phys. Rev. B 69, 165306 (2004)CrossRefADSGoogle Scholar
  41. 41.
    T. Kwapiński, J. Phys.: Condens. Matter 22, 295303 (2010)Google Scholar
  42. 42.
    Y.-Q. Zhou, R.-Q. Wang, L. Sheng, B. Wang, D.Y. Xing, Phys. Rev. B 78, 155327 (2008)CrossRefADSGoogle Scholar
  43. 43.
    A.-P. Jauho, N.S. Wingreen, Y. Meir, Phys. Rev. B 50, 5528 (1994)CrossRefADSGoogle Scholar
  44. 44.
    T. Kwapiński, J. Phys.: Condens. Matter 19, 176218 (2007)ADSGoogle Scholar
  45. 45.
    J. Maciejko, J. Wang, H. Guo, Phys. Rev. B 74, 085324 (2006)CrossRefADSGoogle Scholar
  46. 46.
    T. Kwapiński, R. Taranko, E. Taranko, Phys. Rev. B 66, 035315 (2002)CrossRefADSGoogle Scholar
  47. 47.
    D.M. Newns, Phys. Rev. B 178, 1123 (1968)CrossRefGoogle Scholar
  48. 48.
    S. Tsuneyuki, N. Shima, M. Tsukada, Surf. Sci. 186, 26 (1987)CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Institute of PhysicsM. Curie-Skłodowska UniversityLublinPoland

Personalised recommendations