Enhancing and controlling single-atom high-harmonic generation spectra: a time-dependent density-functional scheme

  • Alberto Castro
  • Angel Rubio
  • Eberhard K. U. Gross
Regular Article


High harmonic generation (HHG) provides a flexible framework for the development of coherent light sources in the extreme-ultraviolet and soft X-ray regimes. However it suffers from low conversion efficiencies as the control of the HHG spectral and temporal characteristics requires manipulating electron trajectories on attosecond time scale. The phase matching mechanism has been employed to selectively enhance specific quantum paths leading to HHG. A few important fundamental questions remain open, among those how much of the enhancement can be achieved by the single-emitter and what is the role of correlations (or the electronic structure) in the selectivity and control of HHG generation. Here we address those questions by examining computationally the possibility of optimizing the HHG spectrum of isolated hydrogen and helium atoms by shaping the slowly varying envelope of a 800 nm, 200-cycles long laser pulse. The spectra are computed with a fully quantum mechanical description, by explicitly computing the time-dependent dipole moment of the systems using a time-dependent density-functional approach (or the single-electron Schrödinger equation for the case of H), on top of a one-dimensional model. The sought optimization corresponds to the selective enhancement of single harmonics, which we find to be significant. This selectivity is entirely due to the single atom response, and not to any propagation or phase-matching effect. Moreover, we see that the electronic correlation plays a role in the determining the degree of optimization that can be obtained.


Computational Methods 


  1. 1.
    P.A. Franken, A.E. Hill, C.W. Peters, G. Weinreich, Phys. Rev. Lett. 7, 118 (1961)ADSCrossRefGoogle Scholar
  2. 2.
    A. McPherson, G. Gibson, H. Jara, U. Johann, T.S. Luk, I.A. McIntyre, K. Boyer, C.K. Rhodes, J. Opt. Soc. Am. B 4, 595 (1987)ADSCrossRefGoogle Scholar
  3. 3.
    M. Ferray, A.L. Huillier, X.F. Li, L.A. Lompré, G. Mainfray, C. Manus, J. Phys. B 21, L31 (1988)ADSCrossRefGoogle Scholar
  4. 4.
    O. Smirnova, M. Ivanov, Multielectron High Harmonic Generation: Simple Man on a Complex Plane (Wiley-VCH Verlag GmbH and Co. KGaA, 2014), pp. 201–256Google Scholar
  5. 5.
    K.L. Ishikawa, in Advances in Solid State Lasers Development and Applications, edited by M. Grishin (Intech, 2010), Chap. 19, pp. 439–464Google Scholar
  6. 6.
    M. Hentschel, R. Kienberger, C. Spielmann, G.A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, F. Krausz, Nature 414, 509 (2001) ADSCrossRefGoogle Scholar
  7. 7.
    A. Wirth et al., Science 334, 195 (2011) ADSCrossRefGoogle Scholar
  8. 8.
    T. Brabec, F. Krausz, Rev. Mod. Phys. 72, 545 (2000)ADSCrossRefGoogle Scholar
  9. 9.
    M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, F. Krausz, Nature 419, 803 (2002) ADSCrossRefGoogle Scholar
  10. 10.
    D. Lee, J.H. Kim, K.H. Hong, C. Nam, Phys. Rev. Lett. 87, 243902 (2001) ADSCrossRefGoogle Scholar
  11. 11.
    Z. Chang, A. Rundquist, H. Wang, M.M. Murnane, H.C. Kapteyn, Phys. Rev. Lett. 79, 2967 (1997) ADSCrossRefGoogle Scholar
  12. 12.
    H.T. Kim, D.G. Lee, K.H. Hong, J.H. Kim, I.W. Choi, C.H. Nam, Phys. Rev. A 67, 051801 (2003) ADSCrossRefGoogle Scholar
  13. 13.
    A.M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000) ADSCrossRefGoogle Scholar
  14. 14.
    C. Brif, R. Chakrabarti, H. Rabitz, New J. Phys. 12, 075008 (2010) ADSCrossRefGoogle Scholar
  15. 15.
    C. Winterfeldt, C. Spielmann, G. Gerber, Rev. Mod. Phys. 80, 117 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I.P. Christov, M.M. Murnane, H.C. Kapteyn, Nature 406, 164 (2000) ADSCrossRefGoogle Scholar
  17. 17.
    R. Bartels, S. Backus, I. Christov, H. Kapteyn, M. Murnane, Chem. Phys. 267, 277 (2001) ADSCrossRefGoogle Scholar
  18. 18.
    T. Pfeifer, D. Walter, C. Winterfeldt, C. Spielmann, G. Gerber, Appl. Phys. B 80, 277 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    D.H. Reitze et al., Opt. Lett. 29, 86 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    P. Villoresi, S. Bonora, M. Pascolini, L. Poletto, G. Tondello, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, S.D. Silvestri, Opt. Lett. 29, 207 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    D. Walter, Ph.D. thesis, University of Würzburg, 2006Google Scholar
  22. 22.
    J. Werschnik, E.K.U. Gross, J. Phys. B 40, R175 (2007) MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    I. Schaefer, R. Kosloff, Phys. Rev. A 86, 063417 (2012) ADSCrossRefGoogle Scholar
  24. 24.
    I. Schaefer, Master’s thesis, Fritz Haber Center, Institute of Chemistry, The Hebrew University of Jerusalem, 2012Google Scholar
  25. 25.
    E. Runge, E. Gross, Phys. Rev. Lett. 52, 997 (1984)ADSCrossRefGoogle Scholar
  26. 26.
    Fundamentals of Time-Dependent Density Functional Theory, Lecture Notes in Physics, edited by M.A.L. Marques, N.T. Maitra, F.M.S. Nogueira, E.K.U. Gross, A. Rubio (Springer, Berlin, Heidelberg, 2012), Vol. 837Google Scholar
  27. 27.
    J.L. Krause, K.J. Schafer, K.C. Kulander, Phys. Rev. Lett. 68, 3535 (1992) ADSCrossRefGoogle Scholar
  28. 28.
    K.J. Schafer, B. Yang, L.F. DiMauro, K.C. Kulander, Phys. Rev. Lett. 70, 1599 (1993) ADSCrossRefGoogle Scholar
  29. 29.
    P.B. Corkum, Phys. Rev. Lett. 71, 1994 (1993) ADSCrossRefGoogle Scholar
  30. 30.
    M. Lewenstein, P. Balcou, M.Y. Ivanov, A. L’Huillier, P.B. Corkum, Phys. Rev. A 49, 2117 (1994) ADSCrossRefGoogle Scholar
  31. 31.
    P. Saliéres et al., Science 292, 902 (2001) ADSCrossRefGoogle Scholar
  32. 32.
    O. Smirnova, M. Spanner, M. Ivanov, Phys. Rev. A 77, 033407 (2008) ADSCrossRefGoogle Scholar
  33. 33.
    O. Smirnova, M. Spanner, M. Ivanov, J. Phys. B 39, S307 (2006) ADSCrossRefGoogle Scholar
  34. 34.
    S. Popruzhenko, D. Bauer, J. Mod. Opt. 55, 2573 (2008) CrossRefzbMATHGoogle Scholar
  35. 35.
    T.M. Yan, S.V. Popruzhenko, M.J.J. Vrakking, D. Bauer, Phys. Rev. Lett. 105, 253002 (2010) ADSCrossRefGoogle Scholar
  36. 36.
    M.F. Herman, E. Kluk, Chem. Phys. 91, 27 (1984)ADSCrossRefGoogle Scholar
  37. 37.
    G. van de Sand, J.M. Rost, Phys. Rev. Lett. 83, 524 (1999)ADSCrossRefGoogle Scholar
  38. 38.
    J. Wu, B.B. Augstein, C. Figueira de Morisson Faria, Phys. Rev. A 88, 063416 (2013) ADSCrossRefGoogle Scholar
  39. 39.
    K. Kulander, K. Schafer, J. Krause, Laser Phys. 3, 359 (1993)Google Scholar
  40. 40.
    X.M. Tong, S.I. Chu, Chem. Phys. 217, 119 (1997) ADSCrossRefGoogle Scholar
  41. 41.
    A. Bandrauk, S. Chelkowski, D. Diestler, J. Manz, K.J. Yuan, Phys. Rev. A 79, 023403 (2009) ADSCrossRefGoogle Scholar
  42. 42.
    A. Gordon, F.X. Kärtner, N. Rohringer, R. Santra, Phys. Rev. Lett. 96, 223902 (2006) ADSCrossRefGoogle Scholar
  43. 43.
    S. Pabst, R. Santra, Phys. Rev. Lett. 111, 233005 (2013) ADSCrossRefGoogle Scholar
  44. 44.
    C.A. Ullrich, S. Erhard, E.K.U. Gross, in Super Intense Laser Atom Physics IV, NATO ASI Series 3/13, edited by H.G. Muller, M.V. Fedorov (Kluwer, 1996), pp. 267−284Google Scholar
  45. 45.
    M.A.L. Marques, A. Castro, G.F. Bertsch, A. Rubio, Comput. Phys. Commun. 151, 60 (2003)ADSCrossRefGoogle Scholar
  46. 46.
    A. Castro, H. Appel, M. Oliveira, C.A. Rozzi, X. Andrade, F. Lorenzen, M.A.L. Marques, E.K.U. Gross, A. Rubio, Phys. Stat. Sol. B 243, 2465 (2006) ADSCrossRefGoogle Scholar
  47. 47.
    B. Sundaram, P.W. Milonni, Phys. Rev. A 41, 6571 (1990) MathSciNetADSCrossRefGoogle Scholar
  48. 48.
    J.I. Fuks, P. Elliott, A. Rubio, N.T. Maitra, J. Phys. Chem. Lett. 4, 735 (2013)CrossRefGoogle Scholar
  49. 49.
    A. Castro, M. Marques, A. Rubio, J. Chem. Phys. 121, 3425 (2004) ADSCrossRefGoogle Scholar
  50. 50.
    A. Castro, J. Werschnik, E. Gross, Phys. Rev. Lett. 109, 153603 (2012) ADSCrossRefGoogle Scholar
  51. 51.
    A. Castro, E. Gross, in Fundamentals of Time-Dependent Density Functional Theory, Lecture Notes in Physics, edited by M.A. Marques, N.T. Maitra, F.M. Nogueira, E. Gross, A. Rubio (Springer Berlin/Heidelberg, 2012), Vol. 837, pp. 265–276Google Scholar
  52. 52.
    M.J.D. Powell, IMA J. Numer. Anal. 28, 649 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    J. Solanpää, J.A. Budagosky, N.I. Shvetsov-Shilovski, A. Castro, A. Rubio, E. Räsänen, Phys. Rev. A 90, 053402 (2014) ADSCrossRefGoogle Scholar
  54. 54.
    K. Krieger, A. Castro, E.K.U. Gross, Chem. Phys. 391, 51 (2011)ADSCrossRefGoogle Scholar
  55. 55.
    C.G. Wahlström, J. Larsson, A. Persson, T. Starczewski, S. Svanberg, P. Salières, P. Balcou, A. L’Huillier, Phys. Rev. A 48, 4709 (1993) ADSCrossRefGoogle Scholar
  56. 56.
    E. Constant, D. Garzella, P. Breger, E. Mével, C. Dorrer, C. Le Blanc, F. Salin, P. Agostini, Phys. Rev. Lett. 82, 1668 (1999) ADSCrossRefGoogle Scholar
  57. 57.
    A. Gordon, F.X. Kärtner, N. Rohringer, R. Santra, Phys. Rev. Lett. 96, 223902 (2006) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Alberto Castro
    • 1
    • 2
  • Angel Rubio
    • 3
    • 4
    • 5
  • Eberhard K. U. Gross
    • 6
  1. 1.ARAID Foundation, Edificio CEEIZaragozaSpain
  2. 2.Institute for Biocomputation and Physics of Complex Systems (BIFI), and Zaragoza Center for Advanced Modelling (ZCAM)University of ZaragozaZaragozaSpain
  3. 3.Max Planck Institute for the Structure and Dynamics of MatterHamburgGermany
  4. 4.Center for Free-Electron Laser Science & Department of PhysicsUniversity of HamburgHamburgGermany
  5. 5.Nano-Bio Spectroscopy Group and ETSF, Dpto. Fisica de MaterialesUniversidad del País Vasco, CFM CSIC-UPV/EHU-MPC & DIPCSan SebastiánSpain
  6. 6.Max-Planck Institut für MikrostrukturphysikHalleGermany

Personalised recommendations