Spin probe dynamics of n-hexadecane in confined geometry

  • Miroslava Lukešová
  • Helena Švajdlenková
  • Pit Sippel
  • Eva Macová
  • Dušan Berek
  • Alois Loidl
  • Josef BartošEmail author
Regular Article


A combined study of the rotational dynamics of the stable free radical 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) and the phase behavior of n-hexadecane (n-HXD) in the bulk and the confined states in a series of silica gels (SG) by means of ESR and DSC is presented. A slow to fast motion transition of the spin probe TEMPO in the bulk n-HXD occurs at T 50 G,bulkT m,bulk, i.e., well below the melting temperature due to its trapping and localized mobility in the interlamellar gap of the crystallites [J. Bartoš, H. Švajdlenková, M. Zaleski, M. Edelmann, M. Lukešová, Physica B 430, 99 (2013)]. On the other hand, the dynamics of the TEMPO in the confined systems is strongly slowing down with T 50 G (D pore) > T m (D pore) and slightly increases with the pore size D pore = 60, 100 and 300 Å of the SG’s. At the same time, both the corresponding melting temperature, T m (D pore), and melting enthalpy, Δ H m (D pore), decrease with D pore together with the mutual anti-correlation between T 50 G and T m as a function of the inverse of pore diameter, 1/D pore. Moreover, the dynamic heterogeneity of the TEMPO in the confined state below T 50 G (D pore) is closely related to the phase transformation. The strong slowing down of the spin probe motion likely results from its preferential localization at the interface layer of the matrix pore due to specific interaction of TEMPO molecules with the polar silanol groups of the SG matrix. This is supported by special study on a series of the variously filled n-HXD/SG systems, other similar experimental findings as well as by theoretical spectral argument.


Solid State and Materials 


  1. 1.
    C. Alba-Simionesco, B. Coasne, G. Dosseh, G. Dudziak, K.E. Gubbins, R. Radhakrishnan, M. Sliwinska-Bartkowiak, J. Phys.: Condens. Matter 18, R15 (2006)ADSGoogle Scholar
  2. 2.
    M. Alcoutlabi, G.B. McKenna, J. Phys.: Condens. Matter 17, R461 (2005)ADSGoogle Scholar
  3. 3.
    M. Koza, B. Frick, R. Zorn (Eds), Eur. Phys. J. Special Topics 189 (2010)Google Scholar
  4. 4.
    M. Koza, B. Frick, R. Zorn (Eds), Eur. Phys. J. Special Topics 141 (2007)Google Scholar
  5. 5.
    M. Koza, B. Frick, R. Zorn (Eds), Eur. Phys. J. E 12 (2003)Google Scholar
  6. 6.
    B. Frick, R. Zorn, H. Büttner (Eds), J. Phys. IV 10 (2000)Google Scholar
  7. 7.
    C.L. Jackson, G.B. McKenna, J. Chem. Phys. 93, 9002 (1990)CrossRefADSGoogle Scholar
  8. 8.
    R. Mu, V.M. Malhotra, Phys. Rev. B 44, 4296 (1991)CrossRefADSGoogle Scholar
  9. 9.
    K.M. Unruh, T.E. Huber, C.A. Huber, Phys. Rev. B 48, 9021 (1993)CrossRefADSGoogle Scholar
  10. 10.
    M. Sliwinska-Bartkowiak, J. Gras, R. Sikorski, R. Radhakrishnan, L. Gelb, K.E. Gubbins, Langmuir 15, 6060 (1999)CrossRefGoogle Scholar
  11. 11.
    M.R. Landry, Thermochim. Acta 433, 27 (2005)CrossRefGoogle Scholar
  12. 12.
    M. Baba, J.D. Nedelec, J. Lacoste, J.L. Gardette, M. Morel, Degr. Polym. Stab. 80, 305 (2003)CrossRefGoogle Scholar
  13. 13.
    N. Bahloul, M. Baba, J.M. Nedelec, J. Phys. Chem. B 109, 16227 (2005)CrossRefGoogle Scholar
  14. 14.
    R. Evans, U.M.B. Marconi, J. Chem. Phys. 86, 7138 (1987)CrossRefADSGoogle Scholar
  15. 15.
    C. Alba-Simionesco, G. Dosseh, E. Dumont, B. Frick, B. Geil, D. Morineau, V. Teboul, Y. Xia, Eur. Phys. J. E 12, 19 (2003)CrossRefGoogle Scholar
  16. 16.
    P. Huber, D. Wallacher, J. Alberts, K. Knorr, Eur. Phys. Lett. 65, 35 (2004)CrossRefGoogle Scholar
  17. 17.
    P. Huber, V.P. Soprunyuk, K. Knorr, Phys. Rev. E 74, 031610 (2006)CrossRefADSGoogle Scholar
  18. 18.
    A.E.W. Hansen, F. Courivaud, A. Karlsson, S. Kolboe, M. Stocker, Micropor. Mesopor. Mater. 22, 309 (1998)CrossRefGoogle Scholar
  19. 19.
    M. Okazaki, K. Toriyama, S. Anandan, Chem. Phys. Lett. 401, 363 (2005)CrossRefADSGoogle Scholar
  20. 20.
    A.F. Kremer, A. Huwe, A. Schönhals, A.S. Rozanski, in Broadband Dielectric Spectroscopy, edited by F. Kremer, A. Schönhals (Springer-Verlag, Berlin, 2002), p. 171Google Scholar
  21. 21.
    M. Sliwinska-Bartkowiak, G. Dudziak, R. Sikorski, N. Gras, R. Radhakrishnan, K.E. Gubbins, J. Chem. Phys. 114, 950 (2001)CrossRefADSGoogle Scholar
  22. 22.
    A. Huwe, M. Arndt, F. Kremer, C. Haggenmueller, P. Behrens, J. Chem. Phys. 107, 9699 (1997)CrossRefADSGoogle Scholar
  23. 23.
    P. Pissis, D. Daoukaki-Diamanti, L. Apekis, C. Christodoulides, J. Phys.: Condens. Matter 6, L325 (1994)ADSGoogle Scholar
  24. 24.
    R. Zorn, D. Richter, L. Hartmann, F. Kremer, B. Frick, J. Phys. (France) 10, 7 (2000)Google Scholar
  25. 25.
    R. Zorn, B. Frick, L. Hartmann, F. Kremer, A. Schönhals, D. Richter, Physica B 350, e1115 (2004)CrossRefADSGoogle Scholar
  26. 26.
    J. Baumert, B. Asmussen, C. Gutt, R. Kahn, J. Chem. Phys. 116, 10869 (2002)CrossRefADSGoogle Scholar
  27. 27.
    T. Hofmann, D. Wallacher, M. Mayorova, R. Zorn, B. Frick, P. Huber, J. Chem. Phys. 136, 124505 (2012)CrossRefADSGoogle Scholar
  28. 28.
    Molecular Dynamics in Restricted Geometries, edited by J.M. Drake, J. Klafter (Wiley and Sons, New York, 1989)Google Scholar
  29. 29.
    J.M. Drake, J. Klafter, Phys. Today 43, 46 (1990)CrossRefADSGoogle Scholar
  30. 30.
    D. Dutta, P.K. Pujari, K. Sudarshan, S.K. Sharma, J. Phys. Chem. C 112, 19055 (2008)CrossRefGoogle Scholar
  31. 31.
    R. Zaleski, J. Goworek, Mat. Sci. Forum 607, 180 (2009)CrossRefGoogle Scholar
  32. 32.
    M. Iskrová, V. Majerník, E. Illeková, O. Šauša, D. Berek, J. Krištiak, Mat. Sci. Forum 607, 235 (2009)CrossRefGoogle Scholar
  33. 33.
    G.G. Cameron, in Comprehensive Polymer Science, edited by C. Booth, C. Price (Pergamon Press, Oxford, 1989), Vol. 1, p. 517Google Scholar
  34. 34.
    Z. Veksli, M. Andreis, B. Rakvin, Prog. Polym. Sci. 25, 949 (2000)CrossRefGoogle Scholar
  35. 35.
    D. Banerjee, S.N. Bhat, S.V. Bhat, D. Leporini, Proc. Natl. Acad. Sci. 106, 11448 (2009)CrossRefADSGoogle Scholar
  36. 36.
    D. Banerjee, S.N. Bhat, S.V. Bhat, D. Leporini, PLoS One 7, e44382 (2012)CrossRefADSGoogle Scholar
  37. 37.
    D. Banerjee, S.V. Bhat, D. Leporini, Adv. Chem. Phys. 152, 1 (2013)Google Scholar
  38. 38.
    D. Leporini, X.X. Zhu, M. Krause, G. Jeschke, H.W. Spiess, Macromolecules 35, 3977 (2002)CrossRefADSGoogle Scholar
  39. 39.
    H. Yoshioka, J. Chem. Phys. Soc. Faraday Trans. I 84, 4509 (1988)CrossRefGoogle Scholar
  40. 40.
    G. Martini, M.F. Ottaviani, M. Romanelli, L. Kevan, Coll. Surf. 41, 149 (1989)CrossRefGoogle Scholar
  41. 41.
    G. Martini, Coll. Surf. 45, 83 (1990)CrossRefGoogle Scholar
  42. 42.
    S. Anandan, M. Okazaki, Micropor. Mesopor. Mater. 87, 77 (2005)CrossRefGoogle Scholar
  43. 43.
    G. Martini, M.F. Ottaviani, M. Romanelli, J. Coll. Interface Sci. 94, 105 (1983)CrossRefGoogle Scholar
  44. 44.
    M. Romanelli, M.F. Ottaviani, G. Martini, J. Coll. Interface Sci. 96, 373 (1983)CrossRefGoogle Scholar
  45. 45.
    G. Martini, Coll. Surf. 11, 409 (1984)CrossRefGoogle Scholar
  46. 46.
    G. Martini, M.F. Ottaviani, M. Romanelli, J. Coll. Interf. Sci. 115, 87 (1987)CrossRefGoogle Scholar
  47. 47.
    F. Mazzoleni, M.F. Ottaviani, G. Martini, J. Phys. Chem. 92, 953 (1988)CrossRefGoogle Scholar
  48. 48.
    M. Romanelli, M.F. Ottaviani, G. Martini, L. Kevan, J. Phys. Chem. 93, 317 (1989)CrossRefGoogle Scholar
  49. 49.
    M. Okazaki, K. Toriyama, K. Sawaguchi, K. Oda, Appl. Magn. Res. 23, 433 (2003)CrossRefGoogle Scholar
  50. 50.
    M. Okazaki, K. Toriyama, J. Phys. Chem. B 107, 7654 (2003)CrossRefGoogle Scholar
  51. 51.
    M. Okazaki, K. Toriyama, K. Sawaguchi, K. Oda, Bull. Chem. Soc. Jpn 77, 87 (2004)CrossRefGoogle Scholar
  52. 52.
    M. Okazaki, K. Toriyama, J. Phys. Chem. B 109, 13180 (2005)CrossRefGoogle Scholar
  53. 53.
    M. Okazaki, K. Toriyama, J. Phys. Chem. B 109, 20068 (2005)CrossRefGoogle Scholar
  54. 54.
    M. Okazaki, S. Anandan, S. Seelan, M. Nishida, K. Toriyama, Langmuir 23, 1215 (2007)CrossRefGoogle Scholar
  55. 55.
    J. Bartoš, H. Švajdlenková, M. Zaleski, M. Edelmann, M. Lukešová, Physica B 430, 99 (2013)CrossRefADSGoogle Scholar
  56. 56.
    G.P. Rabold, J. Polym. Sci. A 17, 121 (1969)Google Scholar
  57. 57.
    J. Bartoš, H. Švajdlenková, G. Dlubek, Y. Yu, R. Krause-Rehberg, Chem. Phys. Lett. 584, 88 (2013)CrossRefADSGoogle Scholar
  58. 58.
    H. Švajdlenková, O. Šauša, M. Iskrová-Miklošoviová, V. Majernik, J. Krištiak, J. Bartoš, Chem. Phys. Lett. 539, 39 (2012)CrossRefADSGoogle Scholar
  59. 59.
    H. Švajdlenková, J. Bartoš, J. Polym. Sci. B 47, 1058 (2009)CrossRefGoogle Scholar
  60. 60.
    M.G. Broadhurst, J. Res. Natl. Bur. Stand. 66A, 241 (1962)CrossRefGoogle Scholar
  61. 61.
    M. Dirand, M. Bouroukba, V. Chevallier, D. Petitjean, J. Chem. Eng. Data 47, 115 (2002)CrossRefGoogle Scholar
  62. 62.
    M.W. Maddox, K.E. Gubbins, J. Chem. Phys. 107, 9659 (1997)CrossRefADSGoogle Scholar
  63. 63.
    T. Takei, T. Konishi, M. Fuji, T. Watanabe, M. Chikazawa, Thermochim. Acta 267, 159 (1995)CrossRefGoogle Scholar
  64. 64.
    S. Amanuel, H. Bauer, P. Bonventre, D. Lasher, J. Phys. Chem. C 113, 18983 (2009)CrossRefGoogle Scholar
  65. 65.
    G.P. Lozos, B.M. Hoffman, J. Phys. Chem. 78, 2110 (1974)CrossRefGoogle Scholar
  66. 66.
    J. Tiňo, P. Mach, Z. Hloušková, I. Chodák, J. Macromol. Chem. Pure Appl. Chem. A 31, 1481 (1994)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Miroslava Lukešová
    • 1
  • Helena Švajdlenková
    • 1
  • Pit Sippel
    • 2
  • Eva Macová
    • 1
  • Dušan Berek
    • 1
  • Alois Loidl
    • 2
  • Josef Bartoš
    • 1
    Email author
  1. 1.Department of Structure and Physical propertiesPolymer Institute of SASBratislavaSlovakia
  2. 2.Experimental Physics V, CEKMUniversity of AugsburgAugsburgGermany

Personalised recommendations