Prospects of low-dimensional and nanostructured silicon-based thermoelectric materials: findings from theory and simulation

  • Neophytos Neophytou
Regular Article
Part of the following topical collections:
  1. Topical issue: Silicon and Silicon-related Materials for Thermoelectricity


Silicon based low-dimensional materials receive significant attention as new generation thermoelectric materials after they have demonstrated record low thermal conductivities. Very few works to-date, however, report significant advances with regards to the power factor. In this review we examine possibilities of power factor enhancement in: (i) low-dimensional Si channels and (ii) nanocrystalline Si materials. For low-dimensional channels we use atomistic simulations and consider ultra-narrow Si nanowires and ultra-thin Si layers of feature sizes below 15 nm. Room temperature is exclusively considered. We show that, in general, low-dimensionality does not offer possibilities for power factor improvement, because although the Seebeck coefficient could slightly increase, the conductivity inevitably degrades at a much larger extend. The power factor in these channels, however, can be optimized by proper choice of geometrical parameters such as the transport orientation, confinement orientation, and confinement length scale. Our simulations show that in the case where room temperature thermal conductivities as low as κ l = 2 W/mK are achieved, the ZT figure of merit of an optimized Si low-dimensional channel could reach values around unity. For the second case of materials, we show that by making effective use of energy filtering, and taking advantage of the inhomogeneity within the nanocrystalline geometry, the underlying potential profile and dopant distribution large improvements in the thermoelectric power factor can be achieved. The paper is intended to be a review of the main findings with regards to the thermoelectric performance of nanoscale Si through our simulation work as well as through recent experimental observations.


Power Factor Boltzmann Transport Equation High Power Factor Ionize Impurity Scattering Thermoelectric Power Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, Nature 451, 163 (2008)CrossRefADSGoogle Scholar
  2. 2.
    A.I. Boukai, Y. Bunimovich, J.T. Kheli, J.-K. Yu, W.A. Goddard III, J.R. Heath, Nature 451, 168 (2008)CrossRefADSGoogle Scholar
  3. 3.
    J. Tang, H.-T. Wang, D.H. Lee, M. Fardy, Z. Huo, T.P. Russell, P. Yang, Nano Lett. 10, 4279 (2010)CrossRefADSGoogle Scholar
  4. 4.
    D. Li, Y. Wu, R. Fang, P. Yang, A. Majumdar, Appl. Phys. Lett. 83, 3186 (2003)CrossRefADSGoogle Scholar
  5. 5.
    K. Nielsch, J. Bachmann, J. Kimling, H. Böttner, Adv. Energy Mater. 1, 713 (2011)CrossRefGoogle Scholar
  6. 6.
    G. Chen, Semicond. Semimet. 71, 203 (2001)CrossRefGoogle Scholar
  7. 7.
    R. Chen, A.I. Hochbaum, P. Murphy, J. Moore, P. Yang, A. Majumdar, Phys. Rev. Lett. 101, 105501 (2008)CrossRefADSGoogle Scholar
  8. 8.
    D. Li, S.T. Huxtable, A.R. Abramsin, A. Majumdar, Trans. ASME 127, 108 (2005)CrossRefGoogle Scholar
  9. 9.
    P. Martin, Z. Aksamija, E. Pop, U. Ravaioli, Phys. Rev. Lett. 102, 125503 (2009)CrossRefADSGoogle Scholar
  10. 10.
    C.J. Vineis, A. Shakouri, A. Majumdar, M.C. Kanatzidis, Adv. Mater. 22, 3970 (2010)CrossRefGoogle Scholar
  11. 11.
    L.D. Hicks, M.S. Dresselhaus, Phys. Rev. B 47, 16631 (1993)CrossRefADSGoogle Scholar
  12. 12.
    M. Dresselhaus, G. Chen, M.Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J.-P. Fleurial, P. Gagna, Adv. Mater. 19, 1043 (2007)CrossRefGoogle Scholar
  13. 13.
    C.M. Jaworski, V. Kulbachinskii, J.P. Heremans, Phys. Rev. B 80, 125208 (2009)CrossRefADSGoogle Scholar
  14. 14.
    N. Neophytou, H. Kosina, Phys. Rev. B 83, 245305 (2011)CrossRefADSGoogle Scholar
  15. 15.
    N. Neophytou, H. Kosina, J. Electron. Mater. 41, 1305 (2012)CrossRefADSGoogle Scholar
  16. 16.
    G.D. Mahan, J.O. Sofo, Proc. Natl. Acad. Sci. USA 93, 7436 (1996)CrossRefADSGoogle Scholar
  17. 17.
    T.B. Boykin, G. Klimeck, F. Oyafuso, Phys. Rev. B 69, 115201 (2004)CrossRefADSGoogle Scholar
  18. 18.
    G. Klimeck, S. Ahmed, B. Hansang, N. Kharche, S. Clark, B. Haley, S. Lee, M. Naumov, H. Ryu, F. Saied, M. Prada, M. Korkusinski, T.B. Boykin, R. Rahman, IEEE Trans. Electr. Dev. 54, 2079 (2007)CrossRefADSGoogle Scholar
  19. 19.
    G. Klimeck, S. Ahmed, N. Kharche, M. Korkusinski, M. Usman, M. Prada, T.B. Boykin, IEEE Trans. Electr. Dev. 54, 2090 (2007)CrossRefADSGoogle Scholar
  20. 20.
    N. Neophytou, A. Paul, M. Lundstrom, G. Klimeck, IEEE Trans. Elect. Dev. 55, 1286 (2008)CrossRefADSGoogle Scholar
  21. 21.
    N. Neophytou, A. Paul, G. Klimeck, IEEE Trans. Nanotechnol. 7, 710 (2008)CrossRefADSGoogle Scholar
  22. 22.
    N. Neophytou, M. Wagner, H. Kosina, S. Selberherr, J. Electron. Mater. 39, 1902 (2010)CrossRefADSGoogle Scholar
  23. 23.
    N. Neophytou, G. Klimeck, H. Kosina, J. Appl. Phys. 109, 053721 (2011)CrossRefADSGoogle Scholar
  24. 24.
    N. Neophytou, H. Kosina, J. Electron. Mater. 40, 753 (2011)CrossRefADSGoogle Scholar
  25. 25.
    N. Neophytou, H. Kosina, J. Appl. Phys. 112, 024305 (2012)CrossRefADSGoogle Scholar
  26. 26.
    N. Neophytou, X. Zianni, H. Kosina, S. Frabboni, B. Lorenzi, D. Narducci, Nanotechnology 24, 205402 (2013)CrossRefADSGoogle Scholar
  27. 27.
    N. Neophytou, X. Zianni, H. Kosina, S. Frabboni, B. Lorenzi, D. Narducci, J. Electron. Mater. 43, 1896 (2014)CrossRefADSGoogle Scholar
  28. 28.
    R. Kim, S. Datta, M.S. Lundstrom, J. Appl. Phys. 105, 034506 (2009)CrossRefADSGoogle Scholar
  29. 29.
    S. Lee, F. Oyafuso, P. Von, Allmen, G. Klimeck, Phys. Rev. B 69, 045316 (2004)CrossRefADSGoogle Scholar
  30. 30.
    N. Neophytou, H. Kosina, J. Comput. Electron. 11, 29 (2012)CrossRefGoogle Scholar
  31. 31.
    N. Neophytou, H. Kosina, Nano Lett. 10, 4913 (2010)CrossRefADSGoogle Scholar
  32. 32.
    N. Neophytou, H. Kosina, Phys. Rev. B 84, 085313 (2011)CrossRefADSGoogle Scholar
  33. 33.
    E.B. Ramayya, D. Vasileska, S.M. Goodnick, I. Knezevic, J. Appl. Phys. 104, 063711 (2008)CrossRefADSGoogle Scholar
  34. 34.
    S. Jin, M.V. Fischetti, T. Tang, J. Appl. Phys. 102, 83715 (2007)CrossRefGoogle Scholar
  35. 35.
    M.-S. Lee, S.D. Mahanti, Phys. Rev. B 85, 165149 (2012)CrossRefADSGoogle Scholar
  36. 36.
    Q. Zhang, H. Wang, W. Liu, H. Wang, B. Yu, Q. Zhang, Z. Tian, G. Ni, S. Lee, K. Esfarjani, G. Chen, Z. Ren, Energy Environ. Sci. 5, 5246 (2012)CrossRefGoogle Scholar
  37. 37.
    A. Popescu, M.L. Woods, Appl. Phys. Lett. 97, 052102 (2010)CrossRefADSGoogle Scholar
  38. 38.
    H. Karamitaheri, N. Neophytou, M. Karami Taheri, R. Faez, H. Kosina, J. Electron. Mater. 42, 2091 (2013)CrossRefADSGoogle Scholar
  39. 39.
    H. Karamitaheri, N. Neophytou, H. Kosina, J. Appl. Phys. 115, 024302 (2014)CrossRefADSGoogle Scholar
  40. 40.
    Z. Aksamija, I. Knezevic, Phys. Rev. B 82, 045319 (2010)CrossRefADSGoogle Scholar
  41. 41.
    M. Luisier, J. Appl. Phys. 110, 074510 (2011)CrossRefADSGoogle Scholar
  42. 42.
    M. Luisier, Phys. Rev. B 86, 245407 (2012)CrossRefADSGoogle Scholar
  43. 43.
    D. Donadio, G. Galli, Nano Lett. 10, 847 (2010)CrossRefADSGoogle Scholar
  44. 44.
    E.B. Ramayya, L.N. Maurer, A.H. Davoody, I. Knezevic, Phys. Rev. B 86, 115328 (2012)CrossRefADSGoogle Scholar
  45. 45.
    T.T.M. Vo, A.J. Williamson, V. Lordi, G. Galli, Nano Lett. 8, 1111 (2008)CrossRefADSGoogle Scholar
  46. 46.
    M. Zebarjadi, G. Joshi, G. Zhu, B. Yu, A. Minnich, Y. Lan, X. Wang, M. Dresselhaus, Z. Ren, G. Chen, Nano Lett. 11, 2225 (2011)CrossRefADSGoogle Scholar
  47. 47.
    B. Yu, M. Zebarjadi, H. Wang, K. Lukas, H. Wang, D. Wang, C. Opeil, M. Dresselhaus, G. Chen, Z. Ren, Nano Lett. 12, 2077 (2012)CrossRefADSGoogle Scholar
  48. 48.
    B.M. Curtin, E.A. Codecido, S. Krämer, J.E. Bowers, Nano Lett. 13, 5503 (2013)CrossRefADSGoogle Scholar
  49. 49.
    N. Neophytou, H. Kosina, Appl. Phys. Lett. 105, 073119 (2014)CrossRefADSGoogle Scholar
  50. 50.
    W. Liang, A.I. Hochbaum, M. Fardy, O. Rabin, M. Zhang, P. Yang, Nano Lett. 9, 1689 (2009)CrossRefADSGoogle Scholar
  51. 51.
    S. Roddaro, D. Ercolani, M.A. Safeen, S. Suomalainen, F. Rosella, F. Giazotto, L. Sorba, F. Beltram, Nano Lett. 13, 3638 (2013)CrossRefADSGoogle Scholar
  52. 52.
    J. Moon, J.-H. Kim, Z.C.Y. Chen, J. Xiang, R. Chen, Nano Lett. 13, 1196 (2013)CrossRefADSGoogle Scholar
  53. 53.
    Y. Tian, M.R. Sakr, J.M. Kinder, D. Liang, M.J. MacDonald, R.L.J. Qiu, H.-J. Gao, X.P.A. Gao, Nano Lett. 12, 6492 (2012)CrossRefADSGoogle Scholar
  54. 54.
    D. Narducci, B. Lorenzi, X. Zianni, N. Neophytou, S. Frabboni, G.C. Gazzadi, A. Roncaglia, F. Suriano, Phys. Stat. Sol. A 211, 1255 (2014)CrossRefGoogle Scholar
  55. 55.
    J.Y.W. Seto, J. Appl. Phys. 46, 5247 (1975)CrossRefADSGoogle Scholar
  56. 56.
    J.W. Orton, M.J. Powell, Rep. Prog. Phys. 43, 1263 (1980)CrossRefADSGoogle Scholar
  57. 57.
    C. Jacoboni, L. Reggiani, Rev. Mod. Phys. 55, 645 (1983)CrossRefADSGoogle Scholar
  58. 58.
    Physical Properties of Semiconductors,
  59. 59.
    G. Masetti, M. Severi, S. Solmi, IEEE Trans. Electr. Dev. 30, 764 (1983)CrossRefGoogle Scholar
  60. 60.
    B. Lorenzi, D. Narducci, R. Tonini, S. Frabboni, G.C. Gazzadi, G. Ottaviani, N. Neophytou, X. Zianni, J. Electron. Mater. 43, 3812 (2014)CrossRefADSGoogle Scholar
  61. 61.
    M. Zervos, Z. Viskadourakis, G. Athanasopoulos, R. Flores, O. Conde, J. Giapintzakis, J. Appl. Phys. 115, 033709 (2014)CrossRefADSGoogle Scholar
  62. 62.
    J.-K. Yu, S. Mitrovic, D. Tham, J. Varghese, J.R. Heath, Nat. Nanotechnol. 5, 718 (2010)CrossRefADSGoogle Scholar
  63. 63.
    P.E. Hopkins, C.M. Reinke, M.F. Su, R.H. Olsson III, E.A. Shaner, Z.C. Leseman, J.R. Serrano, L.M. Phinney, I.E. Kady, Nano Lett. 11, 107 (2011)CrossRefADSGoogle Scholar
  64. 64.
    S. Wolf, N. Neophytou, H. Kosina, J. Appl. Phys. 115, 204306 (2014)CrossRefADSGoogle Scholar
  65. 65.
    J.-H. Lee, G. Galli, J.C. Grossman, Nano Lett. 8, 3750 (2008)CrossRefADSGoogle Scholar
  66. 66.
    S.P. Hepplestone, G.P. Srivastava, Phys. Rev. B 84, 115326 (2011)CrossRefADSGoogle Scholar
  67. 67.
    C. Bera, N. Mingo, S. Volz, Phys. Rev. Lett. 104, 115502 (2010)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.School of EngineeringUniversity of WarwickCoventryUK

Personalised recommendations