Advertisement

Modulating coherence resonance in non-excitable systems by time-delayed feedback

  • Paul M. Geffert
  • Anna Zakharova
  • Andrea Vüllings
  • Wolfram Just
  • Eckehard SchöllEmail author
Regular Article

Abstract

We propose a paradigmatic model system, a subcritical Hopf normal form subjected to noise and time-delayed feedback, to investigate the impact of time delay on coherence resonance in non-excitable systems. We develop analytical tools to estimate the stationary distribution and the time correlations in nonlinear stochastic delay differential equations. These tools are applied to our model to propose a novel quantity to measure coherence resonance induced by a saddle-node bifurcation of periodic orbits.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    H.A. Kramers, Physica 7, 284 (1940)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    P. Hänggi, P. Talkner, M. Borkovec, Rev. Mod. Phys. 62, 251 (1990)ADSCrossRefGoogle Scholar
  3. 3.
    L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Rev. Mod. Phys. 70, 223 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    P. Reimann, Phys. Rep. 361, 57 (2002)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    G. Hu, T. Ditzinger, C.Z. Ning, H. Haken, Phys. Rev. Lett. 71, 807 (1993)ADSCrossRefGoogle Scholar
  6. 6.
    A.S. Pikovsky, J. Kurths, Phys. Rev. Lett. 78, 775 (1997)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    B. Lindner, J. García-Ojalvo, A.B. Neiman, L. Schimansky-Geier, Phys. Rep. 392, 321 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    J.L.A. Dubbeldam, B. Krauskopf, D. Lenstra, Phys. Rev. E 60, 6580 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    G. Giacomelli, M. Giudici, S. Balle, J.R. Tredicce, Phys. Rev. Lett. 84, 3298 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    J.F.M. Avila, H.L.D. de S. Cavalcante, J.R.R. Leite, Phys. Rev. Lett. 93, 144101 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    C. Otto, B. Lingnau, E. Schöll, K. Lüdge, Opt. Exp. 22, 13288 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    D. Ziemann, R. Aust, B. Lingnau, E. Schöll, K. Lüdge, Europhys. Lett. 103, 14002 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    J. Hizanidis, A.G. Balanov, A. Amann, E. Schöll, Phys. Rev. Lett. 96, 244104 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    K. Wiesenfeld, J. Stat. Phys. 38, 1071 (1985)ADSCrossRefMathSciNetGoogle Scholar
  15. 15.
    A.B. Neiman, P.I. Saparin, L. Stone, Phys. Rev. E 56, 270 (1997)ADSCrossRefGoogle Scholar
  16. 16.
    C. Palenzuela, R. Toral, C.R. Mirasso, O. Calvo, J.D. Gunton, Europhys. Lett. 56, 347 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    O.V. Ushakov, H.J. Wünsche, F. Henneberger, I.A. Khovanov, L. Schimansky-Geier, M.A. Zaks, Phys. Rev. Lett. 95, 123903 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    A. Zakharova, T. Vadivasova, V. Anishchenko, A. Koseska, J. Kurths, Phys. Rev. E 81, 011106 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    A. Zakharova, A. Feoktistov, T. Vadivasova, E. Schöll, Eur. Phys. J. Special Topics 222, 2481 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    R. Bellmann, K.L. Cooke, Differential-Difference Equations (Academic Press, New York, 1963)Google Scholar
  21. 21.
    W. Just, A. Pelster, M. Schanz, E. Schöll, Phil. Trans. R. Soc. A 368, 303 (2010)ADSCrossRefzbMATHGoogle Scholar
  22. 22.
    V. Flunkert, I. Fischer, E. Schöll, Phil. Trans. R. Soc. A 371, 20120465 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    N.B. Janson, A.G. Balanov, E. Schöll, Phys. Rev. Lett. 93, 010601 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    A.G. Balanov, N.B. Janson, E. Schöll, Physica D 199, 1 (2004)ADSCrossRefzbMATHGoogle Scholar
  25. 25.
    T. Prager, H.P. Lerch, L. Schimansky-Geier, E. Schöll, J. Phys. A 40, 11045 (2007)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    J. Hizanidis, E. Schöll, Phys. Rev. E 78, 066205 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    R. Aust, P. Hövel, J. Hizanidis, E. Schöll, Eur. Phys. J. Special Topics 187, 77 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    N.E. Kouvaris, L. Schimansky-Geier, E. Schöll, Eur. Phys. J. Special Topics 191, 29 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    A. Vüllings, E. Schöll, B. Lindner, Eur. Phys. J. B 87, 31 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    T.D. Frank, P.J. Beck, R. Friedrich, Phys. Rev. E 68, 021912 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    K. Pyragas, Phys. Lett. A 170, 421 (1992)ADSCrossRefGoogle Scholar
  32. 32.
    Handbook of Chaos Control, edited by E. Schöll, H.G. Schuster (Wiley-VCH, Weinheim, 2008), second completely revised and enlarged editionGoogle Scholar
  33. 33.
    L. Arnold, Random Dynamical Systems, Springer Monographs in Mathematics (Springer, Berlin, 2003)Google Scholar
  34. 34.
    W. Horsthemke, R. Lefever, Noise-Induced Transitions. Theory and Applications in Physics, Chemistry, and Biology (Springer-Verlag, Berlin, 1984)Google Scholar
  35. 35.
    H. Risken, The Fokker-Planck Equation, 2nd edn. (Springer, Berlin, 1996)Google Scholar
  36. 36.
    P.E. Kloeden, E. Platen, Numerical Solution of Stochastic Differential Equations (Springer, Berlin, 1992)Google Scholar
  37. 37.
    J.K. Hale, S.M. Verduyn Lunel, Introduction to Functional Differential Equations (Springer, New York, 1993)Google Scholar
  38. 38.
    W. Just, F. Matthäus, H. Sauermann, J. Phys. A 31, 5925 (1998)ADSCrossRefMathSciNetGoogle Scholar
  39. 39.
    W. Just, H. Benner, C.V. Loewenich, Physica D 199, 33 (2004)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  40. 40.
    B. Fiedler, V. Flunkert, M. Georgi, P. Hövel, E. Schöll, Phys. Rev. Lett. 98, 114101 (2007)ADSCrossRefGoogle Scholar
  41. 41.
    E. Schöll, A.G. Balanov, N.B. Janson, A.B. Neiman, Stoch. Dyn. 5, 281 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  42. 42.
    J. Kottalam, K. Lindenberg, B.J. West, J. Stat. Phys. 42, 979 (1986)ADSCrossRefMathSciNetGoogle Scholar
  43. 43.
    J. Pomplun, A. Amann, E. Schöll, Europhys. Lett. 71, 366 (2005)ADSCrossRefMathSciNetGoogle Scholar
  44. 44.
    U. Küchler, B. Mensch, Stoch. Rep. 40, 23 (1992)CrossRefzbMATHGoogle Scholar
  45. 45.
    A. Amann, E. Schöll, W. Just, Physica A 373, 191 (2007)ADSCrossRefGoogle Scholar
  46. 46.
    R.M. Corless, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey, D.E. Knuth, Adv. Comput. Math. 5, 329 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  47. 47.
    R.L. Stratonovich, in Topics in the Theory of Random Noise (Gordon and Breach, New York, 1963), Vol. 1Google Scholar
  48. 48.
    P. Hövel, E. Schöll, Phys. Rev. E 72, 046203 (2005)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Paul M. Geffert
    • 1
  • Anna Zakharova
    • 1
  • Andrea Vüllings
    • 1
  • Wolfram Just
    • 1
    • 2
  • Eckehard Schöll
    • 1
    Email author
  1. 1.Institut für Theoretische Physik, Technische Universität BerlinBerlinGermany
  2. 2.Queen Mary, University of London, School of Mathematical SciencesLondonUK

Personalised recommendations