Benford’s law predicted digit distribution of aggregated income taxes: the surprising conformity of Italian cities and regions

Regular Article

Abstract

The yearly aggregated tax income data of all, more than 8000, Italian municipalities are analyzed for a period of five years, from 2007 to 2011, to search for conformity or not with Benford’s law, a counter-intuitive phenomenon observed in large tabulated data where the occurrence of numbers having smaller initial digits is more favored than those with larger digits. This is done in anticipation that large deviations from Benford’s law will be found in view of tax evasion supposedly being widespread across Italy. Contrary to expectations, we show that the overall tax income data for all these years is in excellent agreement with Benford’s law. Furthermore, we also analyze the data of Calabria, Campania and Sicily, the three Italian regions known for strong presence of mafia, to see if there are any marked deviations from Benford’s law. Again, we find that all yearly data sets for Calabria and Sicily agree with Benford’s law whereas only the 2007 and 2008 yearly data show departures from the law for Campania. These results are again surprising in view of underground and illegal nature of economic activities of mafia which significantly contribute to tax evasion. Some hypothesis for the found conformity is presented.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    L. Francis, V.R. Prevosto, Data and disaster: the role of data in the financial crisis, in Proceedings Casualty Actuarial Society E-Forum, 2010, p. 62Google Scholar
  2. 2.
    S. Newcomb, Am. J. Math. 4, 39 (1881)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    F. Benford, Proc. Am. Phil. Soc. 78, 551 (1938)Google Scholar
  4. 4.
    A. Berger, T.P. Hill, Math. Intell. 33, 85 (2011)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    E. Canessa, Physica A 328, 44 (2003)ADSCrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    N. Gauvrit, J.-P. Delahaye, Math. Sci. Hum. Math. Soc. Sci. 182, 7 (2008)MATHMathSciNetGoogle Scholar
  7. 7.
    N. Gauvrit, J.-P. Delahaye, Math. Sci. Hum. Math. Soc. Sci. 186, 5 (2009)MATHMathSciNetGoogle Scholar
  8. 8.
    T.P. Hill, Proc. Am. Math. Soc. 123, 887 (1995)MATHGoogle Scholar
  9. 9.
    T.P. Hill, Stat. Sci. 10, 354 (1995)MATHGoogle Scholar
  10. 10.
    R.S. Pinkham, Ann. Math. Stat. 32, 1223 (1961)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    L. Pietronero, E. Tosatti, V. Tosatti, A. Vespignani, Physica A 293, 297 (2001)ADSCrossRefMATHGoogle Scholar
  12. 12.
    T.A. Mir, Physica A 391, 792 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    T.A. Mir, Physica A 408, 1 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    T.A. Mir, arXiv:1201.3432 (2012)Google Scholar
  15. 15.
    J.C. Pain, Phys. Rev. E 77, 012102 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    L. Shao, B.Q. Ma, Mod. Phys. Lett. A 24, 3275 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    M. Sambridge, H. Tkalčić, A. Jackson, Geo. Phys. Res. Lett. A 37, L22301 (2010)ADSGoogle Scholar
  18. 18.
    G. Judge, L. Schechter, J. Human Resources 44, 1 (2009)CrossRefGoogle Scholar
  19. 19.
    W.R. Mebane Jr., Presp. Polit. 2, 525 (2004)Google Scholar
  20. 20.
    B.F. Roukema, J. Appl. Stat. 41, 164 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    W.K.T. Cho, B.J. Gaines, Am. Statist. 61, 218 (2007)CrossRefMathSciNetGoogle Scholar
  22. 22.
    P. Clippe, M. Ausloos, Physica A 15, 6556 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    E. den Heijer, A.E. Eiben. Using aesthetic measures to evolve art, in IEEE Congress on Evolutionary Computation (CEC 2010), Barcelona, Spain, 2010 (IEEE Press)Google Scholar
  24. 24.
    F. Sandron, Population-E 57, 755 (2002)CrossRefGoogle Scholar
  25. 25.
    T. Alexopoulos, S. Leontsinis, J. Astrophys. Astron. (2014), DOI:10.1007/s12036-014-9303-z
  26. 26.
    M. Ausloos, C. Herteliu, B. Ileanu, Physica A, in press, DOI:10.1016/j.physa.2014.10.041
  27. 27.
    T.P. Hill, A. Berger, Benford Online Bibliography, http://www.benfordonline.net/
  28. 28.
    C. Durtschi, W. Hillison, C. Pacini, J. Forensic Account. 1, 17 (2004)Google Scholar
  29. 29.
    M.J. Nigrini, J. Am. Tax. Assoc. 18, 72 (1996)Google Scholar
  30. 30.
    M.J. Nigrini, L.J. Mittermaier, J. Pract. Theory 16, 52 (1997)Google Scholar
  31. 31.
    M.J. Nigrini, Benford’s law: applications for forensic accounting, auditing and fraud detection (Wiley Publications, New Jersey, 2012)Google Scholar
  32. 32.
    T.P. Hill, Chance 12, 27 (1999)Google Scholar
  33. 33.
    H. Varian, Am. Statist. 23, 65 (1972)Google Scholar
  34. 34.
    C. Carslaw, Accounting Rev. 63, 321 (1988)Google Scholar
  35. 35.
    J. Kinnunen, M. Koskela, J. Int. Acc. Res. 2, 39 (2003)CrossRefGoogle Scholar
  36. 36.
    R.M. Abrantes-Metz, G. Judge, S. Villas-Boas, Appl. Econ. Lett. 10, 893 (2011)CrossRefGoogle Scholar
  37. 37.
    T. Michalski, G. Stoltz, Rev. Econ. Stat. 95, 591 (2013)CrossRefGoogle Scholar
  38. 38.
    B. Rauch, M. Göttsche, G. Brähler, S. Engel, German Econ. Rev. 12, 243 (2011)CrossRefGoogle Scholar
  39. 39.
    C.A. Holz, The Quality of China’s GDP Statistics, Stanford University, SCID Working Paper 487 (2013)Google Scholar
  40. 40.
    J. Nye, C. Moul, BE Journal of Macroeconomics 7, 17 (2007)Google Scholar
  41. 41.
    A.H. Haynes, Scripps Senior Theses., Paper 42 (2012), http://scholarship.claremont.edu/scripps˙theses/42
  42. 42.
    G.G. Johnson, J. Weggenmann, Academy of Accounting and Financial Studies Journal 17, 31 (2013)Google Scholar
  43. 43.
    J. Costa, J. Santos, S. Travassos, R. Cont. Fin. – USP, Sao Paulo 23, 187 (2012)Google Scholar
  44. 44.
    D. Bartolini, R. Santolini, Ann. Reg. Sci. 49, 213 (2012)CrossRefGoogle Scholar
  45. 45.
    E. Padovani, E. Scorsone, Measuring financial health of local governments a comparative framework, Year Book of Swiss Administrative Sciences (2011)Google Scholar
  46. 46.
    F. Schneider, The increase of the size of the shadow economy of 18 OECD countries: some preliminary explanations, IFO Working Paper 306 (2006)Google Scholar
  47. 47.
    G. Jones, Italy approves decree to stave off bankruptcy for Rome council (2014), http://www.reuters.com/assets/print?aid=USBREA1R1OD20140228
  48. 48.
    G. Brosio, A. Cassone, R. Ricciuti, Public Choice 112, 259 (2002)CrossRefGoogle Scholar
  49. 49.
    F. Calderoni, Glob. Crime 12, 41 (2011)CrossRefGoogle Scholar
  50. 50.
    F. Schneider, The value added of underground activities: size and measurement of the shadow economies of 110 countries all over the world, World Bank Working Paper Washington D.C. (2000)Google Scholar
  51. 51.
    P. Di Caro, G. Nicotra, Knowing the unknown across regions: spatial tax evasion across Italy (2014), DOI:10.2139/ssrn.2446803
  52. 52.
    M.R. Marino, R. Zizza, The personal income tax evasion in Italy: an estimate by taxpayer’s type, in Tax Evasion and the Shadow Economy, edited by M. Pickhardt, A. Prinz, (Edward Elgar Pub., Cheltenham, 2011)Google Scholar
  53. 53.
    C.V. Fiorio, F. D’Amuri, Giornale degli Economisti e Annali di Economia 64, 247 (2005)Google Scholar
  54. 54.
    R. Galbiati, G. Zanella, J. Pub. Econ. 96, 485 (2012)CrossRefGoogle Scholar
  55. 55.
    P. Missier, G. Lalk, V. Verykios, F. Grillo, T. Lorusso, P. Angeletti, Distributed Parallel Databases 13, 135 (2003)CrossRefMATHGoogle Scholar
  56. 56.
    J. Boyle, Am. Math. Month. 101, 879 (1994)CrossRefMATHMathSciNetGoogle Scholar
  57. 57.
    P.D. Scott, M. Fasli, Benford’s law: An empirical investigation and a novel explanation, CSM Technical Report 349 (2001), http://repository.essex.ac.uk
  58. 58.
    M. Alexeev, E. Janeba, S. Osborne, J. Comp. Econ. 32, 375 (2004)CrossRefGoogle Scholar
  59. 59.
    B. Geys, G. Daniele, Organized Crime, Institutions and political quality: empirical evidence from Italian municipalities. Workshop Paper, https://politicalscience.stanford.edu/sites/default/files/workshop-materials/Paper˙Ginmarco˙0.pdf
  60. 60.
    M.A. Sergi, Ndrangheta and gangster politics in Calabria. The local side of a global threat, http://www.ecpr.eu/Filestore/PaperProposal/3f185089-adf3-4dee-8c11-000088f2fedc.pdf

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Tariq Ahmad Mir
    • 1
  • Marcel Ausloos
    • 2
    • 3
  • Roy Cerqueti
    • 4
  1. 1.Nuclear Research Laboratory, Astrophysical Sciences DivisionBhabha Atomic Research CentreSrinagarIndia
  2. 2.eHumanities groupRoyal Netherlands Academy of Arts and SciencesAmsterdamThe Netherlands
  3. 3.GRAPESAngleurBelgium
  4. 4.Department of Economics and LawUniversity of MacerataMacerataItaly

Personalised recommendations