Josephson-induced hysteretical behavior of vortex matter in layered BSCCO samples with columnar defects: Bose glass phase and the melting process

  • Leonardo M. QueirozEmail author
  • Maurício D. Coutinho-Filho
  • Ernesto P. Raposo
Regular Article


We present Monte Carlo simulations of three-dimensional systems of vortex lines in the presence of random columnar defects using the Lawrence-Doniach model with BSCCO parameters. In particular, we study the structure factor and the vortex-vortex correlation length along the field (B) direction, for both intermediate and high fields. Two representative initial conditions at zero temperature (T) are used: the Abrikosov lattice and a random vortex lattice, mimicking possible configurations in a zero-field-cooled (ZFC) protocol, both characterized by smooth plane decoupling transitions (formation of pancake-like vortex structure), with exponential decay with T of the correlation length around the melting transition. The very relevant case of field-cooling (FC) from a melted configuration is also considered. In this case, as T decreases for intermediate B, the system evolves through states of an unpinned vortex lattice phase and metastable states of a phase of unpinned vortices in a Bose glass (BG) background; lastly, the system reaches a FC robust BG phase down to very low T. On the other hand, for high fields and under the ZFC protocol, the melting transition is practically concurrent with the discontinuous decoupling of planes; while, under FC, the vortex lattice decouples much before the melting transition. Indeed, we identify that the exchange between flux lines is the underlying mechanism for plane decoupling and the formation of a pancake-like vortex structure. We stress that the correspondent phase diagram B vs. T is in good agreement with previous experimental results in BSCCO.


Solid State and Materials 


  1. 1.
    G. Blatter, M.V. Feigel’man, V.B. Geshkenbein, A.I. Larkin, V.M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994)ADSCrossRefGoogle Scholar
  2. 2.
    D.R. Nelson, Defects and Geometry in Condensed Matter Physics (Cambridge University Press, Cambridge, 2002)Google Scholar
  3. 3.
    P.L. Doussal, Int. J. Mod. Phys. B 24, 3855 (2010)CrossRefzbMATHGoogle Scholar
  4. 4.
    B. Rosenstein, D. Li, Rev. Mod. Phys. 82, 109 (2010)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    J. Bednorz, K. Müller, Z. Physik B 64, 189 (1986)ADSCrossRefGoogle Scholar
  6. 6.
    P. Yang, C.M. Lieber, Science 273, 1836 (1996)ADSCrossRefGoogle Scholar
  7. 7.
    A. Malozemoff et al., IEEE Trans. Appl. Supercond. 9, 2469 (1999)CrossRefGoogle Scholar
  8. 8.
    J.R. Hull, Rep. Prog. Phys. 66, 1865 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    Y. Yamada, M. Mogi, K. Sato, SEI Technical Review 65, 51 (2007)Google Scholar
  10. 10.
    E.H. Brandt, Rep. Prog. Phys. 58, 1465 (1995)ADSCrossRefGoogle Scholar
  11. 11.
    J. Bardeen, M.J. Stephen, Phys. Rev. 140, A1197 (1965)ADSCrossRefGoogle Scholar
  12. 12.
    C.P. Poole, H.A. Farach, R.J. Creswick, R. Prozorov, Superconductivity (Academic Press, Amsterdam, 2007)Google Scholar
  13. 13.
    J. Lidmar, D.R. Nelson, D. A. Gorokhov, Phys. Rev. B 64, 144512 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    L. Civale, A.D. Marwick, T.K. Worthington, M.A. Kirk, J.R. Thompson, L. Krusin-Elbaum, Y. Sun, J.R. Clem, F. Holtzberg, Phys. Rev. Lett. 67, 648 (1991)ADSCrossRefGoogle Scholar
  15. 15.
    M. Konczykowski, F. Rullier-Albenque, E.R. Yacoby, A. Shaulov, Y. Yeshurun, P. Lejay, Phys. Rev. B 44, 7167 (1991)ADSCrossRefGoogle Scholar
  16. 16.
    R.C. Budhani, M. Suenaga, S.H. Liou, Phys. Rev. Lett. 69, 3816 (1992)ADSCrossRefGoogle Scholar
  17. 17.
    M.E. Gallamore, G.E.D. McCormack, T.P. Devereaux, Phys. Rev. Lett. 93, 067002 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    J.Y. Coulter, J.O. Willis, M.P. Maley, J.L. Ullmann, Physica C 412-414, 1079 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    D.R. Nelson, Phys. Rev. Lett. 60, 1973 (1988)ADSCrossRefMathSciNetGoogle Scholar
  20. 20.
    D.R. Nelson, H.S. Seung, Phys. Rev. B 39, 9153 (1989)ADSCrossRefGoogle Scholar
  21. 21.
    D.R. Nelson, V.M. Vinokur, Phys. Rev. Lett. 68, 2398 (1992)ADSCrossRefGoogle Scholar
  22. 22.
    D.R. Nelson, V.M. Vinokur, Phys. Rev. B 48, 13060 (1993)ADSCrossRefGoogle Scholar
  23. 23.
    L. Radzihovsky, Phys. Rev. Lett. 74, 4923 (1995)ADSCrossRefGoogle Scholar
  24. 24.
    A.V. Lopatin, V.M. Vinokur, Phys. Rev. Lett. 92, 067008 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    C. Dasgupta, O.T. Valls, Phys. Rev. Lett. 91, 127002 (2003)ADSCrossRefGoogle Scholar
  26. 26.
    C. Dasgupta, O.T. Valls, Phys. Rev. B 69, 214520 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    C. Dasgupta, O.T. Valls, Phys. Rev. B 80, 094517 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    C. Dasgupta, O.T. Valls, Phys. Rev. Lett. 87, 257002 (2001)ADSCrossRefGoogle Scholar
  29. 29.
    C. Dasgupta, O.T. Valls, Phys. Rev. B 66, 064518 (2002)ADSCrossRefGoogle Scholar
  30. 30.
    T. Giamarchi, P. Le Doussal, Phys. Rev. Lett. 72, 1530 (1994)ADSCrossRefGoogle Scholar
  31. 31.
    T. Giamarchi, P. Le Doussal, Phys. Rev. B 52, 1242 (1995)ADSCrossRefGoogle Scholar
  32. 32.
    T. Klein, I. Joumard, S. Blanchard, J. Marcus, R. Cubitt, T. Giamarchi, P. Le Doussal, Nature 413, 404 (2001)ADSCrossRefGoogle Scholar
  33. 33.
    A. Polkovnikov, Y. Kafri, D.R. Nelson, Phys. Rev. B 71, 014511 (2005)ADSCrossRefGoogle Scholar
  34. 34.
    Y. Kafri, D.R. Nelson, A. Polkovnikov, Phys. Rev. B 76, 144501 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    X.B. Xu, H. Fangohr, M. Gu, W. Chen, Z.H. Wang, F. Zhou, D.Q. Shi, S.X. Dou, J. Phys.: Condens. Matter 26, 115702 (2014)Google Scholar
  36. 36.
    D. Ray, C.J. Olson Reichhardt, B. Jankó, C. Reichhardt, Phys. Rev. Lett. 110, 267001 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    D. Ray, C. Reichhardt, C.J.O. Reichhardt, Supercond. Sci. Technol. 27, 075006 (2014)ADSCrossRefGoogle Scholar
  38. 38.
    W. Jiang, N.C. Yeh, D.S. Reed, U. Kriplani, D.A. Beam, M. Konczykowski, T.A. Tombrello, F. Holtzberg, Phys. Rev. Lett. 72, 550 (1994)ADSCrossRefGoogle Scholar
  39. 39.
    K. Deligiannis, P.A.J. de Groot, M. Oussena, S. Pinfold, R. Langan, R. Gagnon, L. Taillefer, Phys. Rev. Lett. 79, 2121 (1997)ADSCrossRefGoogle Scholar
  40. 40.
    T. Nishizaki, T. Naito, S. Okayasu, A. Iwase, N. Kobayashi, Phys. Rev. B 61, 3649 (2000)ADSCrossRefGoogle Scholar
  41. 41.
    F. Bouquet, C. Marcenat, E. Steep, R. Calemczuk, W.K. Kwok, U. Welp, G.W. Crabtree, R.A. Fisher, N.E. Phillips, A. Schilling, Nature 411, 448 (2001)ADSCrossRefGoogle Scholar
  42. 42.
    J. Hua, U. Welp, J. Schlueter, A. Kayani, Z.L. Xiao, G.W. Crabtree, W.K. Kwok, Phys. Rev. B 82, 024505 (2010)ADSCrossRefGoogle Scholar
  43. 43.
    C.J. van der Beek, M. Konczykowski, V.M. Vinokur, T.W. Li, P.H. Kes, G.W. Crabtree, Phys. Rev. Lett. 74, 1214 (1995)ADSCrossRefGoogle Scholar
  44. 44.
    C.J. van der Beek, M. Konczykowski, V.M. Vinokur, G.W. Crabtree, T.W. Li, P.H. Kes, Phys. Rev. B 51, 15492 (1995)ADSCrossRefGoogle Scholar
  45. 45.
    E. Zeldov, D. Majer, M. Konczykowski, V.B. Geshkenbein, V.M. Vinokur, H. Shtrikman, Nature 375, 373 (1995)ADSCrossRefGoogle Scholar
  46. 46.
    B. Khaykovich, E. Zeldov, D. Majer, T.W. Li, P.H. Kes, M. Konczykowski, Phys. Rev. Lett. 76, 2555 (1996)ADSCrossRefGoogle Scholar
  47. 47.
    D.T. Fuchs, E. Zeldov, T. Tamegai, S. Ooi, M. Rappaport, H. Shtrikman, Phys. Rev. Lett. 80, 4971 (1998)ADSCrossRefGoogle Scholar
  48. 48.
    T. Shibauchi, T. Nakano, M. Sato, T. Kisu, N. Kameda, N. Okuda, S. Ooi, T. Tamegai, Phys. Rev. Lett. 83, 1010 (1999)ADSCrossRefGoogle Scholar
  49. 49.
    J.C. Soret, V.T. Phuoc, L. Ammor, A. Ruyter, R. De Sousa, E. Olive, G. Villard, A. Wahl, C. Simon, Phys. Rev. B 61, 9800 (2000)ADSCrossRefGoogle Scholar
  50. 50.
    J. Torres, R.R. da Silva, S. Moehlecke, Y. Kopelevich, Solid State Commun. 125, 11 (2003)ADSCrossRefGoogle Scholar
  51. 51.
    M. Menghini, Y. Fasano, F. de la Cruz, S.S. Banerjee, Y. Myasoedov, E. Zeldov, C.J. van der Beek, M. Konczykowski, T. Tamegai, Phys. Rev. Lett. 90, 147001 (2003)ADSCrossRefGoogle Scholar
  52. 52.
    S.S. Banerjee et al., Phys. Rev. Lett. 90, 087004 (2003)ADSCrossRefGoogle Scholar
  53. 53.
    S.S. Banerjee et al., Phys. Rev. Lett. 93, 097002 (2004)ADSCrossRefGoogle Scholar
  54. 54.
    N. Avraham, Y.Y. Goldschmidt, J.T. Liu, Y. Myasoedov, M. Rappaport, E. Zeldov, C.J. van der Beek, M. Konczykowski, T. Tamegai, Phys. Rev. Lett. 99, 087001 (2007)ADSCrossRefGoogle Scholar
  55. 55.
    N. Avraham, E.H. Brandt, G.P. Mikitik, Y. Myasoedov, M. Rappaport, E. Zeldov, C.J. van der Beek, M. Konczykowski, T. Tamegai, Phys. Rev. B 77, 214525 (2008)ADSCrossRefGoogle Scholar
  56. 56.
    T. Verdene, H. Beidenkopf, Y. Myasoedov, H. Shtrikman, M. Rappaport, E. Zeldov, T. Tamegai, Phys. Rev. Lett. 101, 157003 (2008)ADSCrossRefGoogle Scholar
  57. 57.
    S. Goldberg, Y. Segev, Y. Myasoedov, I. Gutman, N. Avraham, M. Rappaport, E. Zeldov, T. Tamegai, C.W. Hicks, K.A. Moler, Phys. Rev. B 79, 064523 (2009)ADSCrossRefGoogle Scholar
  58. 58.
    Y. Nakajima, Y. Tsuchiya, T. Taen, T. Tamegai, S. Okayasu, M. Sasase, Phys. Rev. B 80, 012510 (2009)ADSCrossRefGoogle Scholar
  59. 59.
    R. Prozorov, M.A. Tanatar, B. Roy, N. Ni, S.L. Bud’ko, P.C. Canfield, J. Hua, U. Welp, W.K. Kwok, Phys. Rev. B 81, 094509 (2010)ADSCrossRefGoogle Scholar
  60. 60.
    H. Kim et al., Phys. Rev. B 82, 060518 (2010)ADSCrossRefGoogle Scholar
  61. 61.
    D.O.G. Heron, S.J. Ray, S.J. Lister, C.M. Aegerter, H. Keller, P.H. Kes, G.I. Menon, S.L. Lee, Phys. Rev. Lett. 110, 107004 (2013)ADSCrossRefGoogle Scholar
  62. 62.
    W.E. Lawrence, S. Doniach, in Proceedings of 12th Int. Conf. Low Temp. Phys., edited by E. Kanda (Keigaku, Tokyo, 1971), pp. 361–362Google Scholar
  63. 63.
    S. Ryu, S. Doniach, G. Deutscher, A. Kapitulnik, Phys. Rev. Lett. 68, 710 (1992)ADSCrossRefGoogle Scholar
  64. 64.
    M. Hellerqvist, S. Ryu, L. Lombardo, A. Kapitulnik, Physica C 230, 170 (1994)ADSCrossRefGoogle Scholar
  65. 65.
    L.P. Viana, E.P. Raposo, M.D. Coutinho-Filho, Phys. Rev. B 70, 134516 (2004)ADSCrossRefGoogle Scholar
  66. 66.
    L.P. Viana, E.P. Raposo, M.D. Coutinho-Filho, Physica C 437-438, 341 (2006)ADSCrossRefGoogle Scholar
  67. 67.
    A. Artemov, Physica C 471, 1627 (2011)ADSCrossRefGoogle Scholar
  68. 68.
    M.D. Croitoru, A.I. Buzdin, Phys. Rev. B 86, 224508 (2012)ADSCrossRefGoogle Scholar
  69. 69.
    L.N. Bulaevskii, M. Ledvij, V.G. Kogan, Phys. Rev. B 46, 366 (1992)ADSCrossRefGoogle Scholar
  70. 70.
    J.R. Clem, Phys. Rev. B 43, 7837 (1991)ADSCrossRefGoogle Scholar
  71. 71.
    G. Blatter, V. Geshkenbein, A. Larkin, H. Nordborg, Phys. Rev. B 54, 72 (1996)ADSCrossRefGoogle Scholar
  72. 72.
    C. Wengel, U.C. Täuber, Phys. Rev. B 58, 6565 (1998)ADSCrossRefGoogle Scholar
  73. 73.
    S. Aktas, O. Gazioglu, Physica B 405, 678 (2010)ADSCrossRefGoogle Scholar
  74. 74.
    I.M. Obaidat, B.A. Albiss, Sci. Adv. Mat. 3 (2011)Google Scholar
  75. 75.
    Q.B. Ren, T.W. Lai, M.B. Luo, Physica C 471, 385 (2011)ADSCrossRefGoogle Scholar
  76. 76.
    Q.B. Ren, W.P. Cao, M.B. Luo, J. Supercond. Novel Magn. 26, 2139 (2013)CrossRefGoogle Scholar
  77. 77.
    Q.B. Ren, M.B. Luo, Phys. Lett. A 377, 1966 (2013)ADSCrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Leonardo M. Queiroz
    • 1
    Email author
  • Maurício D. Coutinho-Filho
    • 1
  • Ernesto P. Raposo
    • 1
  1. 1.Laboratório de Física Teórica e Computacional, Departamento de FísicaUniversidade Federal de PernambucoRecifeBrazil

Personalised recommendations